Шпаргалка по «Нейрофизиологии»

Автор работы: Пользователь скрыл имя, 23 Июня 2014 в 16:37, шпаргалка

Описание работы

Работа содержит ответы на вопросы для экзамена (зачета) по «Нейрофизиологии»

Файлы: 1 файл

Neyro.docx

— 387.63 Кб (Скачать файл)

Рибосомы располагаются вблизи ядра и осуществляют синтез белка на матрицах транспортной РНК. Рибосомы нейронов вступают в контакт с эндоплазматической сетью аппарата Гольджи. Лизосомы — обеспечивают гидролиз в нейроне. Пигменты нейронов — меланин и липофусцин находятся в черном веществе среднего мозга, в ядрах блуждающего нерва, клетках симпатической системы.

 Аппарат Гольджи — органелла нейрона, окружающая ядро в виде сети, участвует в синтезе нейросекреторных и других физиологически активных соединений клетки. Митохондрии — органеллы, обеспечиваюшие энергетические потребности нейрона. Их больше всего у наиболее активных его частей: аксонного холмика, в синапсах. При активной деятельности нейрона количество  митохондрий  возрастает.о при активации нейрона увеличивает свою поверхность за счет выпячиваний, что усиливает ядерно-плазматические отношения, стимулирующие функции нервной клетки. Ядро нейрона содержит генетический материал. Генетический аппарат контролирует дифференцировку клетки, ее конечную форму, типичные для этой клетки связи. Ядро регулирует также синтез белка нейрона в течение  всей его  жизни.

15. Основные части нейрона. Функциональное  назначение.

Сложность функции нейрона обусловливает особенности его строения. В нём различают тело клетки (сома), один длинный, маловетвящийся отросток - аксон и несколько коротких ветвящихся отростков - дендритов и синапса.

В большинстве случаев дендриты сильно разветвлены. Вследствие этого их суммарная поверхность значительно превосходит поверхность клетки. Это создает условия размещения на дендритах большого количества синапсов.

Мембарана дендритов, так же как и мембрана тела нейронов, содержит большое кол-во белковых молекул, выполняющих функции химических рецепторов. Они обладают избирательной чувствительностью по отношению к определенным химическим веществам. Эти вещества учавствуют в передаче сигналов от клетки к клетке и являются медиаторами синаптического возбуждения и торможения.

Основная функция аксона заключается  в проведении нервного импульса. таким образом основная задача аксона-проводить электрические сигналы на большие расстояния, связывая клетки друг с другом и с исполнительными органами. Так же по аксону из тела клетки на переферию транспортируются: белки, формирующие ионные каналы и насосы возбуждающие и тормозящие медиаторы , митохондрии и др. Взаимные связи дендритов, аксонов и прилегающих к ним синапсов образуют нейронные сети. В них осуществляется передача и обработка поступающей извне информации.

Пресинаптическое окончание аксона специализируется на передаче сигнала другим нейронам. Поэтому в нем содержаться специальные синаптические пузырьки содержащие специальные спец. химические вещества медиаторы. Мембара пресинапт. Окончания аксона, в отличие от самого аксона, снабжена специфическими рецепторами., способными реагировать на различные медиаторы. Благодаря этому, процесс выделения медиаторов пресинаптическим окончанием может эффективно регулироваться другими нейронами. На теле каждого нейрона может находиться большое количество синаптических бляшек от других нейронов благодаря чему осуществляется обмен огромным количеством информации.

16. Типы нейронов (афферентные, вставочные, эфферентные) и их функциональное  назначение.

Чувствительные (рецепторные, афферентные) нейроны. Эти нейроны своими окончаниями воспринимают различные виды раздражений. Возникшие в нервных окончаниях (рецепторах) импульсы по дендритам проводятся к телу нейрона, которое находится всегда вне головного и спинного мозга, располагаясь в узлах (ганглиях) периферической нервной системы. Затем по аксону нервный импульс направляется в центральную нервную систему, в спинной или в головной мозг. Поэтому чувствительные нейроны называют также приносящими (афферентными) нервными клетками. Нервные окончания (рецепторы) различаются по своему строению, расположению и функциям. Выделяют экстеро-, интеро- и проприорецепторы. Экстерорецепторы воспринимают раздражение из внешней среды. Эти рецепторы находятся в наружных покровах тела (коже, слизистых оболочках) , в органах чувств. Интерорецептрры получают раздражение в основном при изменении химического состава внутренней среды организма (хеморецепторы) , давления в тканях и органах (барорецепторы) . Проприорецепторы воспринимают раздражение (натяжение, напряжение) в мышцах, сухожилиях, связках, фасциях и суставных капсулах. В соответствии с функцией выделяют терморецепторы, которые воспринимают изменения температуры, и механорецепторы, улавливающие различные виды механических воздействий (прикосновение к коже, ее сдавление) . Ноцирецепторы воспринимают болевые раздражения.

 

Эфферентные нейроны нервной системы — это нейроны, передающие информацию от нервного центра к исполнительным органам или другим центрам нервной системы. Например, эфферентные нейроны двигательной зоны коры большого мозга — пирамидные клетки, посылают импульсы к мотонейронам передних рогов спинного мозга, т. е. они являются эфферентными для этого отдела коры большого мозга. В свою очередь мотонейроны спинного мозга являются эфферентными для его передних рогов и посылают сигналы к мышцам. Основной особенностью эфферентных нейронов является наличие длинного аксона, обладающего большой скоростью проведения возбуждения.Эфферентные нейроны отличаются наличием очень длинного аксона покрытого миелиновой оболочкой. Миелиновая оболочка состоит на 75% из липидов (жира) и на 25% из белковых соединений. Она изолирует аксон от внешней среды, что позволяет увеличить скорость передачи импульса в 10 – 15 раз, в сравнении с нейронами которые этой оболочки лишены. тела эфферентных нейронов находятся в пределах центральной нервной системы.

 

Вставочные нейроны (промежуточные нейроны, интернейроны, ассоциативные нейроны) бывают возбуждающими или тормозными. Эти нейроны занимаются тем, что принимают информацию от Афферентных нейронов, обрабатывают её и передают на Эфферентные нейроны или другие вставочные. Основная масса нейронов Центральной Нервной Системы является вставочными нейронами. Некоторые вставочные нейроны участвуют в процессах торможения.Вставочные нейроны получают информацию от нейронов соседних центров и передают её на нейроны своего центра, а другие вставочные нейроны получают информацию от нейронов своего центра и передают её нейронам своего же центра. Таким образом, нейроны организуют ревербирующие (замкнутые) сети, позволяющие длительное время сохранять информацию в своем центре.

17. Потенциал покоя. Нейрофизиологический  механизм мембранного потенциала.

Мембранным потенциалом покоя (МПП) или потенциалом покоя (ПП) называют разность потенци­алов покоящейся клетки между внутренней и наружной сторонами мембраны. Внутренняя сторона мембраны клетки заряжена отрица­тельно по отношению к наружной. Принимая потенциал наружного раствора за нуль, МПП записывают со знаком «минус». Величина МПП зависит от вида ткани и варьирует от -9 до -100 мв. Сле­довательно, в состоянии покоя клеточная мембрана поляризована. Уменьшение величины МПП называют деполяризацией, увеличение — гиперполяризацией, восстановление исходного значения МПП — реполяризацией  мембраны.

Основные положения мембранной теории происхождения МПП сводятся к следующему. В состоянии покоя клеточная мембрана хорошо проницаема для ионов К+ (в ряде клеток и для СГ), менее проницаема для Na+ и практически непроницаема для внутриклеточ­ных белков и других органических ионов. Ионы К+ диффундируют из клетки по концентрационному градиенту, а непроникающие анионы остаются в цитоплазме, обеспечивая появление разности по­тенциалов через  мембрану.

Возникающая разность потенциалов препятствует выходу К+ из клет­ки и при некотором ее значении наступает равновесие между выходом К+ по концентрационному градиенту и входом этих катионов по воз­никшему электрическому градиенту.

18. Ионный механизм электрических  потенциалов в живых клетках.  Основные положения мембранно–ионной теории.

Количественное описание механизмов, участвующих в генерации потенциала действия, стало возможным благодаря методу измерения мембранных токов в условии фиксации потенциала. Этот метод позволяет определить, какой вклад вносят ионы того или иного типа в мембранный ток, а также вычислить величину и временной ход изменений соответствующих ионных проводимостей. Активация натриевой проводимости носит кратковременный характер, за ней следует инактивация. Увеличение калиевой проводимости продолжается до тех пор, пока не закончится деполяризация. Именно зависимость натриевой и калиевой проводимостей от мембранного потенциала и их попеременная активация качественно определяют как амплитуду, так и временной ход потенциала действия, равно как и другие мембранные характеристики, включая порог и рефрактерный период.

Исследование проводимостей одиночных калиевых и натриевых каналов во время потенциала действия проводились в условиях фиксации потенциала участка мембраны. Наблюдаемые при этом принципы работы отдельных каналов соответствуют результатам, полученным ранее в экспериментах с фиксацией потенциала целой клетки: при деполяризации вероятность открытия натриевых и калиевых каналов возрастает. Возрастание вероятности происходит с тем же временным ходом, что и соответствующие токи в условиях фиксации потенциала. Так, натриевые каналы наиболее часто открываются в начале деполяризующего импульса и вероятность таких открытий падает по мере развития натриевой инактивации.

Потенциал покоя зависит главным образом от разности концентраций калия (как было предложено Бернштейном в 1902 году), и, в меньшей степени, от концентраций натрия и хлора. Одновременно с созданием Бернштейном теории потенциала покоя, Овертон сделал важное открытие: он показал, что для генерации нервом потенциала действия необходим натрий, и сделал робкое предположение о том, что основой потенциала действия является вход ионов натрия в клетку. вход натрия в клетку происходит и при положительных значениях мембранного потенциала вплоть до натриевого равновесного потенциала ENa. Спустя десятилетие Ходжкин и Катц добились уменьшения явления овершута путем снижения внеклеточной концентрации натрия, а следовательно, и ЕNa. Они пришли к выводу, что потенциал действия есть результат значительного, хотя и кратковременного, увеличения натриевой проводимости мембраны. Сегодня известно, что это увеличение происходит за счет открытия огромного числа потенциалзависимых натриевых каналов.

В настоящее время происхождение электрических явлений в тканях объясняется с точки зрения ионно-мембранной теории. В 1956-м году Ходжкин и Катц за создание ионно-мембранной теории получили Нобелевскую премию.

 Основные положения мембранно-ионной  теории.  1. Электрические процессы  в клетке возникают вследствие  того, что мембрана обладает избирательной  селективной проницаемостью для  ионов. 2. В процессе жизнедеятельности происходит изменение проницаемости мембраны, в покое она проницаема для одних ионов, а при переходе в активное состояние - для других. 3. Электрические явления в тканях обусловлены неравномерным распределением ионов между цитоплазмой клетки и межклеточной жидкостью. Прежде всего, это касается натрия и калия, в какой-то степени и хлора. 4. Избирательное перемещение ионов через мембрану изменяет ее электрическое состояние и создает (формирует) новые виды электрических явлений в клетках.

19. Отечественные и зарубежные  исследователи, внесшие наибольший  вклад в установление природы  электрического потенциала клетки.

 

Гальвани еще накануне XIX века экспериментально доказал, что между электричеством и функционированием мышц и нервов существует определенная связь. 
Установление электрической природы возбуждения скелетной мышцы привело к практическому применению этого свойства в медицине. Во многом этому способствовал голландский физиолог Виллерн Эйнтховен. В 1903 году он создал особо чувствительный гальванометр, настолько чувствительный, что с его помощью можно было фиксировать изменения электрического потенциала сокращающейся сердечной мышцы. В течение трех последующих лет Эйнтховен записывал изменения потенциала сердца при его сокращении (эта запись называется электрокардиограммой) и сопоставлял особенности пиков и впадин с различными типами сердечных патологий. 
Электрическую природу нервного импульса обнаружить было труднее, поначалу считали, что возникновение электрического тока и распространение его по нервному волокну обусловлены химическими изменениями в нервной клетке. Поводом для такого чисто спекулятивного суждения послужили результаты экспериментов немецкого физиолога XIX века Эмила Дю Буа-Раймона, который с помощью высокочувствительного гальванометра смог зарегистрировать в нерве при его стимуляции слабенький электрический ток. 
По мере развития техники исследования электрической природы нервного импульса становились все более изящными. Помещая крошечные электроды (микроэлектроды) на различные участки нервного волокна, исследователи с помощью осциллоскопа научились регистрировать не только величину возникающего при возбуждении нерва электрического потенциала, но и его продолжительность, скорость распространения и прочие электрофизиологические параметры. За работы, проделанные в этой области, американские физиологи Джозеф Эрлангер и Герберт Спенсер Гессер в 1944 году были удостоены звания лауреатов Нобелевской премии в области медицины и физиологии. 
Если на нервную клетку подавать электрические импульсы возрастающей силы, то вначале, пока сила импульса не достигнет определенной величины, клетка на эти импульсы реагировать не будет. Но как только сила импульса достигнет определенного значения, клетка внезапно возбудится и тут же возбуждение начнет распространяться по нервному волокну. Нервная клетка имеет определенный порог возбуждения, и на любой стимул, превышающий этот порог, она отвечает возбуждением только определенной интенсивности. Таким образом, возбудимость нервной клетки подчиняется закону «все или ничего», и во всех нервных клетках организма природа возбуждения одна и та же. 

Информация о работе Шпаргалка по «Нейрофизиологии»