Шпаргалки по "Метрологии"

Автор работы: Пользователь скрыл имя, 03 Ноября 2013 в 10:42, шпаргалка

Описание работы

1.Метроло́гия (от греч. μέτρον — мера, измерительный инструмент и от др.-греч. λόγος — мысль, причина) — наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности (РМГ 29-99). Предметом метрологии является извлечение количественной информации о свойствах объектов с заданной точностью и достоверностью. Средством метрологии является совокупность измерений и метрологических стандартов, обеспечивающих требуемую точность.

Файлы: 1 файл

Metrologia.doc

— 439.00 Кб (Скачать файл)

47.По источнику возникновения погрешности делят на инструментальные, методические, субъективные:

Инструментальная  погрешность измерения — составляющая погрешности измерения, обусловленная несовершенством применяемого СИ:отличием реальной функции преобразования прибора от его калибровочной зависимости, неустранимыми шумами в измерительной цепи, запаздыванием измерительного сигнала при его прохождении в СИ, внутренним сопротивлением СИ и др. Инструментальная погрешность измерений разделяется на основную (погрешность измерений при применении СИ в нормальных условиях) и дополнительную (составляющая погрешности измерений, возникающая вследствие отклонения какой-либо из влияющих величин от ее номинального значения или ее выхода за пределы нормальной области значений). Метод их оценивания будет рассмотрен ниже.

Методическая  погрешность измерений — составляющая погрещности измерений, обусловленная несовершенством метода измерений. К ней относят погрешности, обусловленные отличием принятой модели объекта измерения от реального объекта, несовершенством способа воплощения принципа измерений, неточностью формул, применяемых при нахождении результата измерений, и другими факторами, не связанными со свойствами СИ. Примерами методических погрешностей измерений являются:

•  погрешности изготовления цилиндрического тела (отличие от идеального круга) при измерении его диаметра;

•  несовершенство определения диаметра круглого тела как среднего из значений диаметра в двух его заранее выбранных перпендикулярных плоскостях;

•  погрешность измерений вследствие кусочно-линейной аппроксимации нелинейной калибровочной зависимости СИ при вычислении результата измерений;

•  погрешность статического косвенного метода измерений массы нефтепродукта в резервуаре вследствие неравномерности плотности нефтепродукта по высоте резервуара.

Субъективная (личная) погрешность измерения — составляющим погрешности измерения, обусловленная индивидуальными особенностями оператора, т. е. погрешность отсчета оператором показаний по шкалам СИ. Они вызываются состоянием оператора, несовершенством органов чувств, эргономическими свойствами СИ. Характеристики субъективной погрешности измерений определяют с учетом способности «среднего оператора» к интерполяции в пределах цены деления шкалы измерительного прибора. Наиболее известная и простая оценка этой погрешности — ее максимальное возможное значение в виде половины цены деления шкалы.

48.По характеру проявления разделяют систематические, случайные и грубые:

Грубой  погрешностью измерений (промахом) называют погрешность измерения, существенно превышающую ожидаему при данных условиях погрешность. Они возникают, как правило из-за ошибок или неправильных действий оператора (неверный отсчет, ошибка в записях или вычислениях, неправильное включение СИ и др.). Возможной причиной промаха могут быть сбои работе технических средств, а также кратковременные резкие из менения условий измерений. Естественно, что грубые погрешности должны быть обнаружены и исключены из ряда измерений.

Более содержательно  деление на систематические и  случайные погрешности.

Систематическая погрешность измерения — составляющая погрешности измерения, остающаяся постоянной или же закономерно изменяющаяся при повторных измерениях одной и той же величины. Систематические погрешности подлежат исключению насколько возможно, тем или иным способом. Наиболее известный из них — введение поправок на известные систематически погрешности. Однако полностью исключить систематическую погрешность практически невозможно, и какая-то ее небольшая часть остается и в исправленном (введением поправок) результате измерений. Эти остатки называются неисключенной систематической погрешностью (НСП). НСП — погрешность измерений, обусловленная погрешностями вычисления и введения поправок или же систематической погрешностью, на действие которой по правка не введена.

Например, с целью  исключения систематической погрешности, измерения, обусловленной нестабильностью функции npeoбpaзования аналитического прибора, периодически проводят его калибровку по эталонным мерам (поверочным газовым смесям или стандартным образцам). Однако, несмотря на это, в момент измерения  все  равно  будет  некоторое   отклонение  действительной функции преобразования прибора от калибровочной зависимости, обусловленное погрешностью калибровки и дрейфом функции преобразования прибора за время, прошедшее после калибровки. Погрешность измерения, обусловленная этим отклонением, является НСП.

Случайной погрешностью измерения называется составляющая погрешности измерения, изменяющаяся случайным образом (по знаку и значению) при повторных измерениях одной и той же шпчины. Причины случайных погрешностей многообразны: шумы измерительного прибора, вариация его показаний, случайные колебания параметров электрической сети и условий измерений, погрешности округления отсчетов и многие другие. В появлении таких погрешностей не наблюдается какой-либо закономерности, они проявляются при повторных измерениях одной и той же величины в виде разброса результатов измерений. Поэтому оценивание случайных погрешностей измерений возможно только на основе математической статистики (эта математическая дисциплина родилась как наука о методах обработки рядов измерений, отягощенных случайными погрешностями).

В отличие от систематических, случайные погрешности  нельзя исключить из результатов  измерений путем введения поправок, однако их влияние можно существенно  уменьшить проведением многократных измерений.

49.Аддитивные и мультипликативные погрешности. Аддитивной погрешностью называется погрешность, постоянная в каждой точке шкалы.

Мультипликативной погрешностью называется погрешность, линейно возрастающая или убывающая с ростом измеряемой величины.

Различать аддитивные и мультипликативные погрешности  легче всего по полосе погрешностей (рис.2.2).

Если абсолютная погрешность не зависит от значения измеряемой величины, то полоса определяется аддитивной погрешностью (рис.2.2, а). Иногда аддитивную погрешность называют погрешностью нуля.

Рис. 2.2 Если постоянной величиной является относительная погрешность, то полоса погрешностей меняется в пределах диапазона измерений и погрешность называется мультипликативной (рис.2.2, б).

Ярким примером аддитивной погрешности является погрешность квантования (оцифровки).

Класс точности измерений зависит от вида погрешностей. Рассмотрим класс точности измерений   для аддитивной и мультипликативной погрешностей:

- для аддитивной  погрешности: 

,

где   - верхний предел шкалы,  - абсолютная аддитивная погрешность.

- для мультипликативной  погрешности

.

 - это условие определяет  порог чувствительности прибора  (измерений).

Абсолютная величина погрешности для обоих типов  погрешностей может быть выражена одной  формулой:

 ,                                                           (2.1.1)

где  -аддитивная погрешность,  -мультипликативная погрешность.

Относительная погрешность с учетом (2.1.1) выражается формулой

,

и, при уменьшении измеряемой величины, возрастает до бесконечности. Приведенное значение погрешности

            

возрастает с  увеличением измеряемой величины.

Аддитивная, мультипликативная и нелинейная

составляющие  погрешности.

Данные составляющие погрешности характерны как для  средств измерений, так и для  измерительных преобразователей.

Обычно определяют аддитивную, мультипликативную и нелинейную погрешности как составляющие абсолютной систематической погрешности Δ(x), соответственно не зависящую от измеряемой величины x, зависящую от x линейно и зависящую от x не линейно. Нелинейную составляющую погрешности применительно к измерительным преобразователям с линейной номинальной функцией преобразования называют погрешностью линейности.

Однако такое  определение не позволяет однозначно выделить эти составляющие из реально наблюдаемой зависимости Δ(x), пример которой приведен на рис. 1.4а. Действительно, в качестве составляющей погрешности Δ(x), например, не зависящей от x, можно принять любое значение погрешности.

Существуют различные  подходы к определению указанных  составляющих погрешности. Ниже приведен один из принятых подходов.

По определению

Δ(x) = Δа + Δм + Δн ,(1.25)

где Δ(x) – абсолютная погрешность, Δа – аддитивная составляющая этой погрешности (аддитивная погрешность), Δм – мультипликативная составляющая погрешности (мультипликативная погрешность), Δн – нелинейная составляющая погрешности (погрешность линейности, нелинейность).

Обычно считают, что

Δа = Δ(x0),(1.26)

где x0 – значение измеряемой величины, лежащее внутри диапазона измерений x1 ≤ x0 ≤ x2. В частности, если этот интервал содержит точку 0, то выбирают x0 = 0. Тогда

Δа = Δ(0).(1.27)

На рис. 1.4б  приведен график зависимости Δ(x) – Δа = Δм + Δн от измеряемой величины x.

Мультипликативная составляющая погрешности по определению  зависит от x линейно. Соответствующую прямую обычно проводят через точки [x0; Δ(x0)] и [x2; Δ(x2)]. Тогда

.     

В частном случае, если x0 = 0, то

 

50 Принципы оценивания погрешностей

Оценивание погрешностей производится с целью получения объективных данных о точности результата измерения. Точность результата измерения характеризуется погрешностью. Погрешность измерения описывается определенной математической моделью, выбор которой обуславливается имеющимися априорными сведениями об источниках погрешности, а также данными, полученными в ходе измерений. С помощью выбранной модели определяются характеристики и параметры погрешности, используемые для к-оли-чественного выражения тех или иных ее свойств.

Характеристики  погрешности принято делить на точечные и интервальные. К точечным относятся СКО случайной погрешности и предел сверху для модуля систематической погрешности, к интервальным — границы неопределенности результата измерения. Если эти границы определяются как отвечающие некоторой доверительной вероятности, то они называются доверительными интервалами. Если же минимально возможные в конкретном случае границы погрешности оценивают так, что погрешность, выходящую за них, встретить нельзя, то они называются предельными (безусловными) интервалами.

В основу выбора оценок погрешностей положен ряд  принципов. Во-первых, оцениваются отдельные  характеристики и параметры выбранной  модели погрешности. Это связано  с тем, что модели погрешностей, как  правило, сложны и описываются многими  параметрами. Определение их всех весьма затруднительно, а иногда и невозможно. Кроме этого, в большинстве практических случаев полное описание модели погрешности содержит избыточную информацию, в то время как знание отдельных ее характеристик вполне достаточно для достижения цели измерения. Во-вторых, оценки погрешности определяют приближенно, с точностью, согласованной с целью измерения. Это обусловлено тем, что погрешности определяют лишь зону неопределенности результата измерения и их не требуется знать очень точно. В-третьих, погрешности оцениваются сверху, поэтому погрешность лучше преувеличить, чем преуменьшить, так как в первом случае снижается качество измерений, а во втором — возможно полное обесценивание результатов всего измерения. В-четвертых, поскольку стремятся получить реалистические значения оценки погрешности результата измерения, т.е. не слишком завышенные и не слишком заниженные, точность измерений должна соответствовать цели измерения. Излишняя точность ведет к неоправданному расходу средств и времени. Недостаточная точность в зависимости от цели измерения может привести к признанию годным в действительности негодного изделия, к принятию ошибочного решения и т. п.

Оценивание погрешностей может проводится до (априорное) и после (апостериорное) измерения. Априорное оценивание — это проверка возможности обеспечить требуемую точность измерений, проводимых в заданных условиях выбранным методом с помощью конкретных СИ. Оно проводится в случаях:

• нормирования метрологических характеристик  СИ;

• разработки методик выполнения измерений;

• выбора средств  измерений для решения конкретной измерительной задачи;

• подготовки измерений, проводимых с помощью конкретного  СИ.

Апостериорную оценку проводят в тех случаях, когда априорная оценка неудовлетворительна или получена на основе типовых метрологических характеристик, а требуется учесть индивидуальные свойства используемого СИ. Такую оценку следует рассматривать как коррекцию априорных оценок.

51 Оценивание погрешностей может проводится до (априорное) и после (апостериорное) измерения. Априорное оценивание — это проверка возможности обеспечить требуемую точность измерений, проводимых в заданных условиях выбранным методом с помощью конкретных СИ. Оно проводится в случаях:

Информация о работе Шпаргалки по "Метрологии"