Изучение свойств и методик определения витамина Р

Автор работы: Пользователь скрыл имя, 13 Апреля 2014 в 11:21, курсовая работа

Описание работы

За последние 30 лет учеными разных стран мира выделено из растительного материала, очищено и изучено свыше 3000 соединений весьма разнообразной химической структуры и принадлежащих к тем или иным классам фенольных соединений. И оказалось, что значительная их часть, несколько сот веществ, при введении в организм животных и человека в той или иной степени проявили капилляро укрепляющую активность, т. е. по логике вещей должны быть отнесены к числу препаратов витамина Р.

Содержание работы

- Введение.
Проблема витамина Р сегодня
1. Обзор Литературы
1.1 Химическая природа витамина Р (флавоноиды).
1.2. Свойства флавоноидов.
1.3. Распростронение в природе.
1.3.1.Симптомы передозировки и дефицита витамина P.
1.3.2. Синтетические препараты содержащие Флавоноиды.
1.4.Физиологическая и биохимическая функция флавоноидов.
1.4.1. На организм.
1.4.2. На кожу.
1.5.Онкопротекторные, детоксикационные, кардиопротекторные и гепатопротекторные свойства.
1.6. Общая функции витамина Р.
1.6.1. Полезен для кожи и сосудов.
1.6.2. Профилактика атеросклероза.
1.6.3. В помощь иммунитету.
1.6.4. Против рака.
1.6.6. Пищеварение и витамин Р.
1.6.5. Польза для глаз.
1.6.7. Артериальное давление.
1.6.8. Гормоны и флавоноиды.
1.6.9. Снижая проявления аллергии.
1.6.10. Воздействие на опорно-двигательный аппарат.
1.7. Взаимодействие Биофлавоноидом с другими активными соединениями.
1.8.Немного о соединениях.
1.8.1. Рутин:
1.8.2. Резвератрол:
1.8.3. Силимарин:
1.8.4. Куркумин:
1.8.5. Кверцетин:
1.8.6. Гесперидин:
1.9. Полезно знать.
2. Материалы и методы
2.1. Первичное исследование растительного сырья.
2.2. Хроматографические методы идентификации флавоноидов.
2.2.1. Тонкослойная хроматография.
2.2.2. Высокоэффективная жидкостная хроматография.
2.3. Количественное и качественное определение флавоноидов.
2.3.1. Химические методы исследования флавоноидов.
2.3.1.2. Методы качественной идентификации флавоноидов.
2.3.2. Объемные методы количественного определения флавоноидов.
2.3.3. Оптические методы определения флавоноидов.
3. Метод определения витамина Р.
3.1. Ход работы.
3.1.2. Результаты исследования.
3.1.3. Примечание:
3.2. Вывод.
Список использованных источников

Файлы: 1 файл

Курсовая раб. гот..docx

— 328.67 Кб (Скачать файл)

Метод жидкостно-жидкостной хроматографии и, особенно, ВЭЖХ позволяет осуществлять качественный и количественный анализ всех видов флавоноидов.

Для разделения флавоноидов между собой и отделения от сопутствующих веществ используется адсорбционно-хроматографический метод [10].

 

 

 

2.2.1.  Тонкослойная хроматография.

Метод тонкослойной хроматографии (ТСХ) очень удобен для сравнительного анализа с использованием стандартных веществ.

Пятна флавоноидов на хроматограмме зачастую могут быть обнаружены просто при облучении пластинки УФ-светом. Широко используются методы обработки хроматограмм такими проявляющими (детектирующими) реагентами, как спиртовый раствор АlCl3, пары иода и концентрированная серная кислота (для силикагелевых слоев), а также нагревание (только для силикагелевых пластинок).

Метод ТСХ позволяет широко варьировать сочетание сорбента и подвижной фазы, подбирая наиболее оптимальный вариант для конкретного объекта (таблица 1.2).

Специфическим для хроматографии флавоноидов является полиамидный сорбент. Полиамидный сорбент (стационарная фаза), в зависимости от состава подвижной фазы, может проявлять двойственный характер, а именно выступать в роли полярной или неполярной фазы.

Соответственно разделение веществ может протекать либо как обычный распределительный (в водно-спиртовых элюентных системах), либо как обращенно-фазный распределительный (в элюентной системе метанол – хлороформ) процессы.

 

Таблица 1.2 – Типичные условия ТСХ анализа флавоноидов

Группа флавоноидов

Неподвижная фаза (сорбент)

Подвижная фаза (элюентная система растворителей)

Флавоноидные гликозиды

Целлюлоза

 

Бутанол – уксусная кислота – вода (3:1:1)

трет-Бутиловый спирт – уксусная кислота – вода

Силикагель

Уксусная кислота (5 – 40%-я)

Этилацетат – метилэтилкетон – метанол (5:3:1)

Полиамид

Метанол – вода (8:2)

Хлороформ – метанол (1: 1)

Полярные гликоны (флавоны, флавонолы)

Целлюлоза

 

трет-Бутиловый спирт – уксусная кислота – вода

Бутанол – уксусная кислота – вода (3:1:1)

50%-я уксусная кислота

Силикагель

 

 

Бензол – уксусная кислота – вода (125:72:5)

Толуол – ацетон – хлороформ (8:7:5)

Хлороформ – ацетон – муравьиная кислота (9:2:1)

Полиамид

Хлороформ – метанол – уксусная кислота (9:1:0,1)

Метанол – уксусная кислота – вода (18:1:1)

Неполярные агликоны (дигидрофлавоны, изофлавоны, полиметилированные флавоны)

Целлюлоза

Уксусная кислота (10 – 30%-я)

Хлороформ – метанол (15:1 или 3:1)

Силикагель

Хлороформ – метанол (3:2)

Полиамид

Метанол – вода (1:1)


 

Центром сорбции является амидная группировка полиамидной макромолекулы, например капрона. Хроматографируемые вещества образуют обратимые водородные связи между протонодонорной гидроксильной группой флавоноидного соединения и карбонильной группой амидного фрагмента.

Агликоны сорбируются на полиамиде прочнее, чем их гликозиды. Сорбция агликонов находится в пропорциональной зависимости от числа гидроксильных групп в молекуле, а также от их местоположения в молекуле [11, 12].

2.2.2.  Высокоэффективная  жидкостная хроматография.

Метод высокоэффективной жидкостной хроматографии (ВЭЖХ) является быстрым, хорошо воспроизводимым методом, который требует малого количества анализируемого вещества и используется для количественного, качественного анализа и препаративного выделения [13].

Для флавоноидов более употребительны колонки с обращенно-фазными сорбентами (RP-8; RP-18) и детектирование с помощью УФ-видимого детектора с переменной длиной волны. В настоящее время широко используется фотодиодный детектор, позволяющий одновременно с выделением пика на хроматограмме получать УФ-видимый спектр вещества, соответствующего этому пику. Такой экспериментальный прием значительно облегчает задачу идентификации веществ.

Подвижные фазы (элюентные системы), как правило, бывают бинарными и содержат подкисленный полярный компонент (водные растворы уксусной, перхлорной, фосфорной или муравьиной кислот) и менее полярный органический растворитель (метанол или ацетонитрил). Подвижная фаза может поступать в колонку как в изократическом, так и в градиентном режиме, когда в ходе процесса хроматографирования происходит во времени изменение соотношения компонентов подвижной фазы [13,14].

Градиентный режим наиболее подходит для разделения сложных смесей флавоноидов. Для колонок с обращенно-фазными сорбентами типичные градиентные программы основаны на использовании подвижных фаз с преобладанием на старте доли полярного растворителя с дальнейшим постепенным возрастанием доли менее полярного растворителя.

Соотнесение пика на хроматограмме с «принадлежащим» ему веществом является наиболее трудной задачей. Удобным приемом является использование параллельного хроматографирования хорошо известных, так называемых стандартных образцов и сравнение с ними хроматограммы исследуемого объекта. Стандартное вещество в идеале должно быть наиболее родственно флавоноидам и иметь подобные хроматографические свойства. В тех случаях, когда стандартное вещество хроматографируется в равных условиях, но параллельно, его называют внешним стандартом. Внутренний стандарт (добавляется в исследуемую пробу перед вводом в хроматограф) должен отвечать следующим условиям: в исследуемой смеси не должно содержаться аналогичное вещество и пик стандарта не должен перекрываться с каким-либо соединением в смеси. Такие ограничения отсутствуют в случае применения внешнего стандарта.

Преимуществами внутреннего стандарта является подтверждение достоверности экстракции, подготовки образца, хроматографической процедуры. В качестве стандартного вещества для флавоноидов часто используется рутин, являющийся коммерческим доступным продуктом. Он хорошо подходит для количественного анализа флавоноловых гликозидов. Для содержащихся в смеси других флавоноидов могут быть использованы такие коммерчески доступные стандарты, как апигенин-7-глюкозид – для флавоновых гликозидов, катехин – для флаван-3-олов, нарингенин – для дигидрофлавонов, дигидрокверцетин – для дигидрофлавонолов, даидзеин – для изофлавонов [13,14].

Для количественного анализа строится кривая зависимости концентрации флавоноида от площади пика для каждого стандарта в тех же самых хроматографических условиях (длина волны, растворитель), которые применяются по отношению к исследуемой смеси. Соответствующие калибровочные кривые могут быть использованы для расчета количества флавоноида, представляемого каждым пиком ВЭЖХ хроматограммы. В настоящее время практически исчезла надобность в построении калибровочных кривых в связи с обеспечением хроматографов компьютерной системой обсчета площадей пиков [13,14].

На примере хроматографирования смеси флавонов и флавонолов в обращенно-фазном варианте (рисунок 1.5) показано, что порядок выхода флавоноидов коррелирует с числом гидроксильных групп, а именно: время удерживания возрастает по мере снижения числа гидроксильных групп в молекуле.

Хроматографические условия: колонка Sep-Pak C-18, градиентный режим: метанол – 5 мМ, H3PO4.

 

Рисунок 1.5 – Хроматограмма смеси флавоноидов

 

 

 

 

 

 

 

 

 

 

Описание пиков и времени удерживания представлены в таблице 1.3.

 

Таблица 1.3 – Время удерживания различных флавоноидов

Пики

Число ОН-групп

Время удерживания, мин

1 – мирицетин

1

11.5

2 – кверцетин

2

19.5

3 – лютеолин

3

23.0

4 – кемпферол

4

31.0

5 – апигенин

5

33.5


 

2.3.  Количественное и качественное  определение флавоноидов

2.3.1. Химические методы  исследования флавоноидов

2.3.1.2. Методы качественной  идентификации флавоноидов

Для обнаружения различных видов флавоноидов используются качественные реакции. Они необходимы для подтверждения нахождения той или иной структуры на этапе идентификации флавоноидов. Наиболее характерными реакциями являются следующие:

-Цианидиновая проба (проба Шинода)

Общей реакцией на флавоноидные соединения является цианидиновая проба (рисунок 1.6), проводимая с помощью концентрированной соляной кислоты и металлического магния. Действие водорода в момент выделения приводит к восстановлению карбонильной группы и образованию ненасыщенного пиранового цикла, который под действием соляной кислоты превращается в оксониевое соединение, имеющее окраску от оранжевой (флавоны) до красно-фиолетовой (флаваноны, флавонолы, флаванонолы) [4].

 

Рисунок 1.6 – Цианидиновая проба

 

Изменение условий восстановления путем замены магния на цинк приводит к изменению окраски. При использовании цинка положительную реакцию дают флавонолы и флавонол-3-гликозиды, а флаваноны не обнаруживают ее.

Цианидиновую реакцию не обнаруживают халконы, ауроны, но при добавлении концентрированной соляной кислоты (без магния) образуют красное окрашивание за счет образования оксониевых солей.

Для постановки реакции 1 г порошка сырья заливают 10 мл 95% этанола, нагревают на водяной бане до кипения и настаивают 3 – 4 ч. Спиртовое извлечение фильтруют, упаривают до объема 2 мл, делят пополам и разливают в 2 пробирки; в каждую пробирку прибавляют по 3 капли концентрированной хлористоводородной кислоты. В 1-ю пробирку добавляют 0.03 – 0.05 г цинковой пыли и нагревают на водяной бане до кипения. Жидкость окрашивается в красный цвет. Во 2-й пробирке окрашивание отсутствует [4].

-Борно-лимонная реакция (реакция Вильсона-Таубека)

5-оксифлавоны  и 5-оксифлавонолы, взаимодействуя с  борной кислотой в присутствии  лимонной (реактив Вильсона), образуют  желтую окраску с красноватой  флюоресценцией в УФ-свете. При замене лимонной кислоты на щавелевую (реактив Таубека) в УФ-свете отмечается зеленая или желтая флюоресценция (рисунок 1.7).

 

Рисунок 1.7 – Реакция Вильсона-Таубека

 

-Реакция с треххлористой сурьмой

5-оксифлавоны  и 5-оксифлавонолы, взаимодействуя с  треххлористой сурьмой, образуют  комплексные соединения, окрашенные  в желтый или желто-оранжевый  цвет – флавоны, в красный или  красно-фиолетовый – халконы (рисунок 1.8).

 

Рисунок 1.8 – Реакция с треххлористой сурьмой

 

Реакцией по Брианту (которая является модификацией пробы Шинода) можно отличить гликозиды от агликонов. Суть метода заключается в следующем: после проведения цианидиновой пробы к раствору добавляют октанол и взбалтывают. При наличии агликонов окраска переходит в органический слой.

-Образование фенолятов

Так как в своей структуре флавоноиды имеют фенольные гидроксилы, то им присущи химические свойства, соответствующие данной функциональной группе. Так, фенольные ОН-группы способны проявлять слабокислые свойства, образуя феноляты с основаниями.

 

 

 

-Взаимодействие со щелочами

Характерной реакцией на флавоноиды считается также их взаимодействие с щелочами. Флавоны, флавонолы, флаваноны и флаванонолы растворяются в щелочах с образованием жёлтой окраски, которая при нагревании изменяется до оранжевой или коричневой. Халконы и ауроны при взаимодействии со щелочами обычно дают красное или ярко-жёлтое окрашивание.

-Образование комплексов с солями металлов

Присутствие фенольных гидроксилов и карбонильной группы позволяет флавоноидам образовывать комплексы различной степени устойчивости с солями металлов (Аl3+, Fe3+, Pb2+ и так далее), вступать в реакции с диазосоединениями с образованием азокрасителей.

-Диазотирование

При проведении реакции диазотирования азосочетание проходит по 6 или 8 положениям. Если положения 5 и 7 замещены, то реакция не идёт (можно доказать присутствие в 7 положении углеводного компонента). В качестве диазосоставляющего часто используют кислоту сульфаниловую или п-нитроанилин.

- При использовании хроматографических методов определения флавоноидов их можно обнаружить на хроматограммах по флуоресценции или в виде окрашенных пятен при сканировании в УФ-свете или/и проявлении одним из реактивов (пары аммиака, 5 %-ный спиртовой раствор алюминия хлорида, 10 % раствор щёлочи, реактив Вильсона, раствор диазотированного сульфаниламида и другие) [4].

2.3.2. Объемные  методы  количественного определения флавоноидов

Объёмный анализ – это совокупность методов химического количественного анализа, основанного на измерении объёмов для установления концентрации (содержания) определяемого вещества. К объёмным методам анализа относят распространённые в лабораторной практике различные варианты титриметрического анализа, основанного на измерении объёма израсходованного раствора реагента известной концентрации, необходимого для достижения точки эквивалентности.

Комплексонометрия – метод титриметрического анализа, который основан на образовании прочных комплексных соединений ионов металлов (всех, кроме одновалентных) с комплексоном III (двунатриевой солью этилендиаминтетрауксусной кислоты), при этом изменяются концентрации ионов металлов в титруемом растворе.

 

 

Метод комплексонометрического титрования избытка ацетата свинца, не вступившего в реакцию осаждения с флавонолами, обладает достаточной избирательностью по отношению к флавоноидам и позволяет проводить определение флавонолов в присутствии ацетилсалициловой кислоты, антрахинонов, кумаринов.

К титриметрическому методу анализа также относится метод окисления флавоноидов ферроцианидом калия по n-фенил-аптрониловой кислоте. Однако метод длителен и не обладает избирательностью [10].

Информация о работе Изучение свойств и методик определения витамина Р