Управление качеством. Типичные этапы жизненного цикла продукции

Автор работы: Пользователь скрыл имя, 23 Марта 2014 в 11:50, контрольная работа

Описание работы

Работа по обеспечению качества продукции осуществляется в рамках действующей на предприятии системы качества. В большинстве случаев при заключении внешнеэкономических контрактов оговариваются требования наличия и документированного оформления положений системы качества у поставщика, а также право ее контроля в любое время потребителем или третьей стороной. Наличие у поставщика сертификационной системы качества, основанной на применении международных стандартов, залог обеспечения качества на всех этапах жизненного цикла товара и успеха в конкурентной борьбе.

Файлы: 1 файл

Стандартизация.docx

— 54.47 Кб (Скачать файл)

Технологическое обеспечение показателей качества деталей начинается уже на стадии проектирования. Поскольку технологическое наследование конструктивных форм, конструктор должен представить себе картину деформированного состояния вала в процессе обработки. Так, например, полые валы, имеющие коническое отверстие, обрабатывают << от отверстия>> т.е. на его базе. При этом в отверстие вала устанавливают коническую пробку и далее проводят обработку в центрах. Деформация как составляющая суммарной погрешности может быть определена расчетом и учтена при установке заготовок на станок. При сложной форме наружной поверхности вала такой расчет несколько затрудняется и на помощь должен прийти эксперимент, организуемый в заводских лабораториях. Конструктор обязан учитывать указанные погрешности наряду с обработкой детали на технологичность.

Целостность ответственных поверхностей валов непосредственно связана с выбором материала и проведением термической обработки. Наиболее правильным решением для таких валов является использование сталей, получаемых в вакууме, хотя недостатки микроструктуры металла невакуумной плавки, вызванные некачественной термообработкой, могут устраняться нагревом токами высокой частоты рабочих шеек валов с охлаждением на воздухе. Неметаллические же включения при этом остаются и могут быть обнаружены в виде пороков на поверхности малой шероховатости. Такие пороки могут представляться в виде характерных лунок. Мнение о том, что указанные дефекты не влияют на работу кинематических пар, если последние имеют малые отклонения формы, являются ошибочным. Очевидно, что в целом ка­чество пары вал- втулка снижается.

Большое внимание должно быть обращено на выбор заготовок и формирование требований к ним. Даже для типовой технологии необходимо учитывать, что пространственные отклонения валов после чернового прохода составляют 0,06 от отклонений заготовки, а после чистового прохода - 0,04 отклонения, возникшего после чернового прохода.

Эти данные, естественно, могут меняться в зависимости от жесткости технологических систем, но при обеспечении качества валов должны быть учтены. Нельзя пространственные погрешности исправлять исключительно на финишных операциях. Более того, при многопроходном шлифовании валов с постоянной подачей исходная погрешность, оставшаяся после обработки лезвийным инструментом, постоянно увеличивается, так как постоянно увеличивается разность между заданной и фактической глубинами резания. Для постоянного уменьшения погрешностей следует при каждом последующем проходе уменьшать подачу и глубину.

При бесцентровом шлифовании наиболее часто приходится исправлять отклонение формы в виде наследственных трех - и пятигранников, что обеспечивается рациональной наладкой станков. Поэтому для обеспечения высоких требований по отклонениям формы нельзя при одной и той же наладке станка шлифовать заготовки, например, с овальной исходной погрешностью и заготовки с исходными пятигранниками в поперечном сечении (отклонение формы устанавливаются с помощью кругломеров). Анализ наладок станков очень удобно проводить с помощью рядов Фурье.

Обработку валов, как правило, проводят в центрах. Возникающая наследственная погрешность является весьма устойчивой. Мерами борьбы с такой погрешностью являются использование отверстий с криволинейными образующими, обеспечение необходимого соотношения углов центровых отверстий и центров, повышение точности формы центровых отверстий. Хорошие результаты достигнуты при шлифовании центровых отверстий, а также при правке гранеными твердосплавными центрами с числом граней 3 или 5.

Если уменьшать отклонение формы в еще большей степени, то наступает своеобразный предел, и технологическая система, являясь консервативной, такое уменьшение уже не обеспечивает. Для дальнейшего повышения качества валов по этому параметру следует применять специальные методы. Так. Можно по определенному закону изменять круговую подачу шлифования валов.

Другим методом является создание специальных колеблющихся систем, установленных на столе шлифовальных станков, для того чтобы * размыть * наследственные погрешности.

Проблема уменьшения отклонений формы оказывается очень сложной, и ошибочно думать, что такие технологические методы, как суперфиниширование, могут всегда уменьшить погрешности. Решить задачу уменьшения погрешностей помогает гармонический анализ.

Промышленность накопила богатый опыт по обеспечению заданной шероховатости как параметра качества. Однако пока не представляется возможным предложить строгие математические зависимости шероховатости от многих производственных факторов и приходится использовать эмпирические формулы. Если известны геометрические размеры детали, ее материал, тип токарного станка, тип инструмента и глубина резания, то можно назначать оптимальные режимы обработки для обеспечения заданной шероховатости. Успешно решаются аналогичные задачи по выбору оптимальных методов обработки заготовок по заданным параметрам их поверхности. Использование ЭВМ существенно упрощает эту работу.

Типовые технологические процессы изготовления колец, втулок, и гильз схожи между собой. Основными технологическими трудностями изготовления этих деталей является обеспечение требований по малым отклонениям формы наружных и внутренних поверхностей, малым отклонениям от цилиндричности, биению поверхностей. Преодоление этих трудностей на фоне типовой технологии представляет собой основу повышения качества деталей.

Конструктивные элементы деталей в виде отверстий, пазов порождают отклонения формы на ответственных поверхностях. Такие отклонения следует преодолевать на основе расчета возникающих упругих перемещений под действием сил резания. Последние выбирают исходя из соображения того, что перемещения должны быть меньше допуска на отклонение формы.

В деталях указанного типа, изготовленных по неизмененным технологическим маршрутам, одного и того же химического состава, но из заготовок, полученных разными методами, получается в итоге различный уровень остаточных напряжений. Термическая обработка меняет уровень напряжений, даже изменяется их знак, но общий вывод остается неизменным и должен приниматься в расчет при технологическом обеспечении качества.

Эффект технологического наследования особенно следует учитывать при изготовлении типа колец. Заготовки колец, изготовленные на горизонтально-ковочных машинах, неизменно получают отклонение формы наружной поверхности в виде овала. Указанная погрешность оказывается исключительно устойчивой, на всех операциях технологического процесса она уменьшается. Ставя задачу повышения качества, нельзя игнорировать форму заготовки. Для качественных колец необходимо ограничить отклонение формы заготовок. Вторым условием повышения качества следует считать использование зажимных устройств с закреплением заготовок по торцам. Этими мероприятиями вполне можно предотвратить передачу вредных наследственных свойств.

Проблема обеспечения качества деталей типа колец, втулок и гильз непосредственно связана с особенностями закрепления их при обработке резанием. Даже при закреплении заготовок распределенными нагрузками передача погрешностей с наружной поверхности на внутреннюю оказывается ощутимой. Поэтому крайне важно обеспечить малые отклонения формы установочных поверхностей.

Указанные детали часто работают в условиях изнашивания, и в связи с этим в поверхностных слоях предпочтительнее напряжение сжатия. Однако вследствие разнообразия методов обработки, различных сочетаний силовых и тепловых факторов воздействия инструмента на обрабатываемую поверхность возникают остаточные тангенциальные напряжения, различные по величине и по знаку, что следует учитывать при технологическом формировании такого показателя качества, как износостойкость.

Вопрос о напряжениях непосредственно связан с отклонениями формы поверхностей колец, втулок, гильз. Реальные поверхности всегда имеют волнистость (гранность). После токарной обработки заготовок диаметром 50-80 мм под такой поверхностью возникает слой со структурой, отличной от структуры основного материала. Глубина этого слоя составляет 25-50 мкм. После термической обработки на операции шлифования можно достичь очень малых отклонений формы. Однако установлено, что на глубине 10-12 мкм от поверхности прошлифованного образца располагается пояс аустенитных зерен. Толщина этого пояса оказывается различной и периодически повторяющейся. С течением времени нестабильный по структуре слой аустенита превращается в мартенсит. При этом, естественно, изменяется (увеличивается) объем материала. В тех местах, где слой аустенита был шире, происходит большее изменение объема (увеличение), и наоборот. Поэтому деталь, имевшая после шлифования весьма малые отклонения формы, получает наследственную волнистость. Для уменьшения отклонений формы необходимо рассматриваемую поверхность обработать дополнительно с помощью методов, создающих сжимающие напряжения, так как они замедляют процесс превращения аустенита в мартенсит. Одним из таких методов является алмазное выглаживание. В результате такой обработки отклонение формы за один и тот же промежуток времени оказывается почти в 3 раза меньше, чем после шлифования эль бором.

Конструктивные формы корпусных деталей непосредственно влияют на теплоотвод при растачивании основных отверстий. Следствием его является отклонение от соосности. При последовательном растачивании показатели качества более низкие, чем при одновременном. Наилучшие результаты получены при одновременном растачивании симметричных частей корпусов.

Особо следует отметить опасность искажения формы главных отверстий корпусных деталей при их закреплении на металлорежущих станках. Для технологического обеспечения качества корпусных деталей в связи с использованием технологической оснастки необходима экспериментальная отработка в условиях заводских лабораторий схемы закрепления с указанием сил закрепления и координат их приложения. Наивысшую точность обеспечивает схема закрепле­ния, соответствующая схеме закрепления корпуса после сборки его в готовой машине.

Для деталей других типов существуют свои технологические приемы повышения качества, и вопрос решается аналогично тому, как он решается применительно к деталям, рассматриваемым выше.

В различных отраслях машиностроения наблюдается повышенный интерес к гибкому производству, в том числе автоматизированному, использованию станков с программным управлением. В связи с этим иногда полают, что вопросы технического обеспечения качества продукции можно решить только благодаря этой, так называемой новой технике. Такая точка зрения, безусловно, ошибочна. Во-первых, указанные технологические системы обладают практически теми же недостатками, что и системы обычные, во-вторых, масштабы их применения малы и пока не играют ощутимой роли в общей массе изготавливаемых деталей машин, в

третьих, надежность их находится не на таком уровне, чтобы можно говорить об устойчивых технологических процессах. Вместе с тем тенденция развития и совершенствования таких технологических систем очевидна. Проблема технического обеспечения качества деталей машин должна решаться с применением любых технологических систем в первую очередь - автоматических.

С увеличением точности на сборке требуется особый подход к оценке баз как геометрических образов. Производственные погрешности и деформации на сборке вызывают существенные отклонения от плоскостности, цилиндричности, конусности, перпендикулярности и пр. Поэтому следует принимать в расчет реальные формы базовых поверхностей.

23. Под эффективностью работ по стандартизации понимают соотношения общественного эффекта применения результатов работ по стандартизации в народном хозяйстве и затрат, связанных с их применением.

Определение эффективности работ по стандартизации осуществляется в целях:

обоснования целесообразности включения конкретных работ по стандартизации в планы государственной и межгосударственной стандартизации;

выбора наиболее оптимальных вариантов, включаемых в стандарты требований;

оценки результативности деятельности в области стандартизации.

В качестве показателей экономической эффективности работ по стандартизации используются:

экономия — величина суммарного уменьшения затрат в народном хозяйстве страны в связи с применением конкретного стандарта на единицу стандартизируемой продукции;

затраты — величина суммарного увеличения затрат в народном хозяйстве страны в связи с применением конкретного стандарта;

экономический эффект на единицу продукции — величина итогового уменьшения затрат при производстве, обращении, применении и утилизации единицы стандартизируемой продукции, определяемый как разность между экономией и затратами;

экономическая эффективность работ — соотношение экономического эффекта и затрат в народном хозяйстве страны в связи с применением конкретного стандарта.

Определение экономической эффективности рекомендуется осуществлять при разработке и применении стандартов:

на продукцию и услуги, устанавливающих технические требования или технические условия;

работы;

методы контроля.

Техническая эффективность работ по стандартизации может выражаться в относительных показателях технических эффектов, получаемых в результате применения стандарта: например, в росте уровня безопасности, снижения вредных воздействий и выбросов, снижение материало- или энергоемкости производства или эксплуатации, повышении ресурса, надежности и др.

Информационная эффективность работ по стандартизации может выражаться в достижении необходимого для общества взаимопонимания, единства представления и восприятия информации, в том числе в товарно-правовых отношениях субъектов хозяйственной деятельности друг с другом и органов государственного управления, в международных научно-технических и торгово-экономических отношениях.

Социальная эффективность заключается в том, что реализуемые на практике обязательные требования к продукции положительно отражаются на здоровье и уровне жизни населения, а также на других социально значимых аспектах. Он выражается в показателях снижения уровня производственного травматизма, уровня заболеваемости, повышения продолжительности жизни, улучшения социально-психологического климата и др.

36. Нормативные документы ГСИ устанавливают основные требования в области метрологического обеспечения. Первые метрологические стандарты были утверждены в 1966 г, а в 1979 г. - первые руководящие документы (РД 50- ......). В 1973 году в метрологии были введены в практику документы рекомендательного характера - МИ, получившие широкое признание и распространение.

Информация о работе Управление качеством. Типичные этапы жизненного цикла продукции