Системы искусственного интеллекта

Автор работы: Пользователь скрыл имя, 25 Мая 2013 в 23:04, курсовая работа

Описание работы

Следующий значимый период в истории искусственного интеллекта – это 80-е года. На этом отрезке искусственный интеллект пережил второе рождение. Были широко осознаны его большие потенциальные возможности, как в исследованиях, так и в развитии производства. В рамках новой технологии появились первые коммерческие программные продукты. В это время стала развиваться область машинного обучения. До этих пор перенесение знаний специалиста-эксперта в машинную программу было утомительной и долгой процедурой. Создание систем, автоматически улучшающих и расширяющих свой запас эвристических (не формальных, основанных на интуитивных соображениях) правил – важнейший этап в последние годы. В начале десятилетия в различных странах были начаты крупнейшие в истории обработки данных, национальные и международные исследовательские проекты, нацеленные на «интеллектуальные вычислительные системы пятого поколения».

Содержание работы

ВВЕДЕНИЕ…………………………………………………………. ……………...3
Глава 1 История создания искусственного интеллекта и систем искусственного интеллекта ………………………………………………………..4
Глава 2 Понятие ИИ и систем ИИ…………………………………………………7
2.1 Экспертные системы……………………………………………………………8

2.2 Искусственные нейронные сети ………………………………………………12

2.3 Естесственно – языковые системы……………………………………………19

ЗАКЛЮЧЕНИЕ…………………………………………………………………….22

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ………………………………23

Файлы: 1 файл

KKR_ISE.doc

— 144.00 Кб (Скачать файл)

2.2 Искусственные  нейронные сети

Искусственные нейронные сети (ИНС) — математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети Маккалока и Питтса. Впоследствии, после разработки алгоритмов обучения, получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.

Задача классификации  представляет собой задачу отнесения  образца к одному из нескольких попарно  не пересекающихся множеств. Примером таких задач может быть, например, задача определения кредитоспособности клиента банка, медицинские задачи, в которых необходимо определить, например, исход заболевания, решение задач управления портфелем ценных бумаг (продать купить или "придержать" акции в зависимости от ситуации на рынке), задача определения жизнеспособных и склонных к банкротству фирм

При решении задач классификации необходимо отнести имеющиеся статические образцы (характеристики ситуации на рынке, данные медосмотра, информация о клиенте) к определенным классам. Возможно несколько способов представления данных. Наиболее распространенным является способ, при котором образец представляется вектором. Компоненты этого вектора представляют собой различные характеристики образца, которые влияют на принятие решения о том, к какому классу можно отнести данный образец. Например, для медицинских задач в качестве компонентов этого вектора могут быть данные из медицинской карты больного. Таким образом, на основании некоторой информации о примере, необходимо определить, к какому классу его можно отнести. Классификатор таким образом относит объект к одному из классов в соответствии с определенным разбиением N-мерного пространства, которое называется пространством входов, и размерность этого пространства является количеством компонент вектора.

Прежде всего, нужно  определить уровень сложности системы. В реальных задачах часто возникает  ситуация, когда количество образцов ограничено, что осложняет определение  сложности задачи. Возможно выделить три основных уровня сложности. Первый (самый простой) – когда классы можно разделить прямыми линиями (или гиперплоскостями, если пространство входов имеет размерность больше двух) – так называемая линейная разделимость. Во втором случае классы невозможно разделить линиями (плоскостями), но их возможно отделить с помощью более сложного деления – нелинейная разделимость. В третьем случае классы пересекаются и можно говорить только о вероятностной разделимости.

Сети с прямой связью являются универсальным средством  аппроксимации функций, что позволяет их использовать в решении задач классификации. Как правило, нейронные сети оказываются наиболее эффективным способом классификации, потому что генерируют фактически большое число регрессионных моделей (которые используются в решении задач классификации статистическими методами).

К сожалению, в применении нейронных сетей в практических задачах возникает проблема. Заранее не известно, какой сложности (размера) может потребоваться сеть для достаточно точной реализации отображения. Эта сложность может оказаться чрезмерно высокой, что потребует сложной архитектуры сетей.

Для построения классификатора необходимо определить, какие параметры  влияют на принятие решения о том, к какому классу принадлежит образец. При этом могут возникнуть две  проблемы. Во-первых, если количество параметров мало, то может возникнуть ситуация, при которой один и тот же набор исходных данных соответствует примерам, находящимся в разных классах. Тогда невозможно обучить нейронную сеть, и система не будет корректно работать (невозможно найти минимум, который соответствует такому набору исходных данных). Исходные данные обязательно должны быть непротиворечивы. Для решения этой проблемы необходимо увеличить размерность пространства признаков (количество компонент входного вектора, соответствующего образцу). Но при увеличении размерности пространства признаков может возникнуть ситуация, когда число примеров может стать недостаточным для обучения сети, и она вместо обобщения просто запомнит примеры из обучающей выборки и не сможет корректно функционировать. Таким образом, при определении признаков необходимо найти компромисс с их количеством. [3]

Далее необходимо определить способ представления входных данных для нейронной сети, т.е. определить способ нормирования. Нормировка необходима, поскольку нейронные сети работают с данными, представленными числами в диапазоне 0..1, а исходные данные могут иметь произвольный диапазон или вообще быть нечисловыми данными. При этом возможны различные способы, начиная от простого линейного преобразования в требуемый диапазон и заканчивая многомерным анализом параметров и нелинейной нормировкой в зависимости от влияния параметров друг на друга.

Кодирование выходных значений.

Задача классификации  при наличии двух классов может  быть решена на сети с одним нейроном в выходном слое, который может принимать одно из двух значений 0 или 1, в зависимости от того, к какому классу принадлежит образец. При наличии нескольких классов возникает проблема, связанная с представлением этих данных для выхода сети. Наиболее простым способом представления выходных данных в таком случае является вектор, компоненты которого соответствуют различным номерам классов. При этом i-я компонента вектора соответствует i-му классу. Все остальные компоненты при этом устанавливаются в 0. Тогда, например, второму классу будет соответствовать 1 на 2 выходе сети и 0 на остальных. При интерпретации результата обычно считается, что номер класса определяется номером выхода сети, на котором появилось максимальное значение. Например, если в сети с тремя выходами мы имеем вектор выходных значений (0.2,0.6,0.4), то мы видим, что максимальное значение имеет вторая компонента вектора, значит класс, к которому относится этот пример, – 2. При таком способе кодирования иногда вводится также понятие уверенности сети в том, что пример относится к этому классу. Наиболее простой способ определения уверенности заключается в определении разности между максимальным значением выхода и значением другого выхода, которое является ближайшим к максимальному. Например, для рассмотренного выше примера уверенность сети в том, что пример относится ко второму классу, определится как разность между второй и третьей компонентой вектора и равна 0.6-0.4=0.2. Соответственно чем выше уверенность, тем больше вероятность того, что сеть дала правильный ответ. Этот метод кодирования является самым простым, но не всегда самым оптимальным способом представления данных.

Известны и другие способы. Например, выходной вектор представляет собой номер кластера, записанный в двоичной форме. Тогда при наличии 8 классов нам потребуется вектор из 3 элементов, и, скажем, 3 классу будет соответствовать вектор 011. Но при этом в случае получения неверного значения на одном из выходов мы можем получить неверную классификацию (неверный номер кластера), поэтому имеет смысл увеличить расстояние между двумя кластерами за счет использования кодирования выхода по коду Хемминга, который повысит надежность классификации.

Другой подход состоит  в разбиении задачи с k классами на k*(k-1)/2 подзадач с двумя классами (2 на 2 кодирование) каждая. Под подзадачей в данном случае понимается то, что сеть определяет наличие одной из компонент вектора. Т.е. исходный вектор разбивается на группы по два компонента в каждой таким образом, чтобы в них вошли все возможные комбинации компонент выходного вектора. Число этих групп можно определить как количество неупорядоченных выборок по два из исходных компонент. Из комбинаторики

Тогда, например, для задачи с четырьмя классами мы имеем 6 выходов (подзадач) распределенных следующим  образом:

№ подзадачи(выхода)

КомпонентыВыхода

1

1-2

2

1-3

3

1-4

4

2-3

5

2-4

6

3-4


Где 1 на выходе говорит  о наличии одной из компонент. Тогда мы можем перейти к номеру класса по результату расчета сетью  следующим образом: определяем, какие  комбинации получили единичное (точнее близкое к единице) значение выхода (т.е. какие подзадачи у нас активировались), и считаем, что номер класса будет тот, который вошел в наибольшее количество активированных подзадач (см. таблицу).

№ класса

Акт. Выходы

1

1,2,3

2

1,4,5

3

2,4,6

4

3,5,6


Это кодирование во многих задачах дает лучший результат, чем  классический способ кодирование.

Выбор объема сети.

Правильный выбор объема сети имеет большое значение. Построить  небольшую и качественную модель часто бывает просто невозможно, а большая модель будет просто запоминать примеры из обучающей выборки и не производить аппроксимацию, что, естественно, приведет к некорректной работе классификатора. Существуют два основных подхода к построению сети – конструктивный и деструктивный. При первом из них вначале берется сеть минимального размера, и постепенно увеличивают ее до достижения требуемой точности. При этом на каждом шаге ее заново обучают. Также существует так называемый метод каскадной корреляции, при котором после окончания эпохи происходит корректировка архитектуры сети с целью минимизации ошибки. При деструктивном подходе вначале берется сеть завышенного объема, и затем из нее удаляются узлы и связи, мало влияющие на решение. При этом полезно помнить следующее правило: число примеров в обучающем множестве должно быть больше числа настраиваемых весов. Иначе вместо обобщения сеть просто запомнит данные и утратит способность к классификации – результат будет неопределен для примеров, которые не вошли в обучающую выборку.

Алгоритм построения классификатора на основе нейронных сетей

  1. Работа с данными 
    1. Составить базу данных из примеров, характерных для данной задачи
    2. Разбить всю совокупность данных на два множества: обучающее и тестовое (возможно разбиение на 3 множества: обучающее, тестовое и подтверждающее).
  2. Предварительная обработка
    1. Выбрать систему признаков, характерных для данной задачи, и преобразовать данные соответствующим образом для подачи на вход сети (нормировка, стандартизация и т.д.). В результате желательно получить линейно отделяемое пространство множества образцов.
    2. Выбрать систему кодирования выходных значений (классическое кодирование, 2 на 2 кодирование и т.д.)
  3. Конструирование, обучение и оценка качества сети:
    1. Выбрать топологию сети: количество слоев, число нейронов в слоях и т.д.
    2. Выбрать функцию активации нейронов (например "сигмоида")
    3. Выбрать алгоритм обучения сети
    4. Оценить качество работы сети на основе подтверждающего множества или другому критерию, оптимизировать архитектуру (уменьшение весов, прореживание пространства признаков)
    5. Остановится на варианте сети, который обеспечивает наилучшую способность к обобщению и оценить качество работы по тестовому множеству.
  4. Использование и диагностика
    1. Выяснить степень влияния различных факторов на принимаемое решение (эвристический подход).
    2. Убедится, что сеть дает требуемую точность классификации (число неправильно распознанных примеров мало)
  5. При необходимости вернутся на этап 2, изменив способ представления образцов или изменив базу данных.
  6. Практически использовать сеть для решения задачи. 

2.3 Естественно-языковые системы

В конце 60-х годов в  исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название «обработка естественного языка» (Natural Language Processing). Задачей данного направления является исследование методов и разработка систем, обеспечивающих реализацию процесса общения с компьютерными системами на естественном языке (систем ЕЯ - общения или ЕЯ-систем).

Естественно-языковые системы  используются для поиска в текстах, распознавания речи, голосового управления и обработки данных. Их доля на рынке составляет около 14%. В данном направлении выделяются следующие категории информационных продуктов:

  • средства, обеспечивающие естественно-языковый интерфейс к базам данных;
  • средства естественно-языкового поиска в текстах и содержательного
  • сканирования текстов (Natural Language text retrieval and Contents Scanning Systems);
  • масштабируемые средства для распознавания речи (Large-Vocabulary Talkwriter);
  • средства голосового ввода, управления и сбора данных (Voice Input and Control Products and Data Collection Systems);
  • компоненты речевой обработки (Voice-Recognition Programming Tools).

Программные продукты первой категории преобразуют естественно-языковые запросы пользователя в SQL-запросы к базам данных. Средства естественно-языкового поиска в текстах осуществляют по запросам пользователей поиск, фильтрацию и сканирование текстовой информации. В отличие от продуктов предыдущей группы, где поиск осуществляется в базах данных, имеющих четкую и заранее известную структуру, средства данной категории осуществляют поиск в неструктурированных текстах, оформленных в соответствии с правилами грамматики того или иного естественного языка. Средства для распознавания речи распознают голосовую информацию и преобразуют ее в последовательность символов. Они ориентированы на работу со словарями объемом от 30000 до 70000 слов. В отличие от этого, средства голосового ввода ориентированы на работу со словарем около 1000 слов и существенно ограничены в возможностях распознавания. Программные средства этого типа предназначены для ввода голосовых команд, управляющих работой некоторого продукта, например, программы сбора данных в тех приложениях, в которых у исполнителей заняты руки. [5]

Компоненты речевой  обработки предназначены для программистов, которых хотят добавить возможности по распознаванию речи в разрабатываемые ими приложения

С учетом истории развития ЕЯ-систем, различают следующие основные классы систем общения:

Информация о работе Системы искусственного интеллекта