Виды диэлектриков

Автор работы: Пользователь скрыл имя, 26 Ноября 2013 в 16:58, курсовая работа

Описание работы

Электроизоляционные материалы подразделяются по их агрегатному состоянию на газообразные, жидкие и твердые. В особую группу могут быть выделены твердеющие материалы, которые в исходном состоянии, во время введения их в изготавливаемую изоляцию, являются жидкостями, но потом отвердевают. Большое практическое значение имеет также разделение электроизоляционных материалов в соответствии с их химической природой на органические и неорганические

Содержание работы

Введение………………………………………………………………………………………3
Электроизоляционные масла………………………………………………………………...4
Жидкие синтетические диэлектрики………………………………………………………..7
Газообразные диэлектрики…………………………………………………………………..9
Битумы……………………………………………………………………………………….10
Смолы………………………………………………………………………………………...11
Воскообразные диэлектрики………………………………………………………………..16
Лаки и компаунды…………………………………………………………………………...17
Волокнистые материалы…………………………………………………………………….25
Текстильные ткани……………………………………………………………………………30
Гибкие пленки………………………………………………………………………………...33
Пластические массы……………………………………………………………………….....34
Эластомеры…………………………………………………………………………………...39
Керамические диэлектрические материалы………………………………………………..44
Слюды…………………………………………………………………………………………48
Асбест………………………………………………………………………………………....51
Магнитные материалы…………………………………………………………………….....53
Заключение……………………………………………………………………………………55
Библиографический список……………………………………………………………….....56

Файлы: 1 файл

Виды диэлектриков.doc

— 943.00 Кб (Скачать файл)

Пермаллои

Данные материалы представляют собой железоникелевые сплавы с содержанием никеля от 36 до 80%. Для улучшения тех или иных характеристик пермаллоев в их состав добавляют хром, молибден, медь и др. Характерными особенностями всех пермаллоев являются их легкая намагничиваемость в слабых магнитных полях и повышенные значения удельного электрического сопротивления. Пермаллои — пластичные сплавы, легко прокатываемые в листы и ленты толщиной до 0,02 мм и менее. Благодаря повышенным значениям удельного сопротивления и стабильности магнитных характеристик пермаллои могут применяться до частот 200—500 кГц. Пермаллои очень чувствительны к деформациям, которые вызывают ухудшение их первоначальных магнитных характеристик. Восстановление первоначального уровня магнитных характеристик деформированных пермаллойных деталей достигается термической обработкой их по строго разработанному режиму.

Магнитно-твердые материалы

Магнитно-твердые материалы обладают большими значениями коэрцитивной силы и большой остаточной индукцией, а следовательно, большими значениями магнитной энергии. К магнитно-твердым материалам относятся:

сплавы, закаливаемые на мартенсит (стали, легированные хромом, вольфрамом или  кобальтом);

  • железо-никель-алюминиевые нековкие сплавы дисперсионного твердения (альни, альнико и др.);
  • ковкие сплавы на основе железа, кобальта и ванадия (виккалой) или на основе железа, кобальта, молибдена (комоль);
  • сплавы с очень большой коэрцитивной силой на основе благородных металлов (платина — железо; серебро — марганец — алюминий и др.);
  • металлокерамические нековкие материалы, получаемые прессованием порошкообразных компонентов с последующим обжигом отпрессованных изделий (магнитов);
  • магнитно-твердые ферриты;
  • металлопластические нековкие материалы, получаемые из прессовочных порошков, состоящих из частиц магнитно-твердого материала и связующего вещества (синтетическая смола);
  • магнитоэластические материалы (магнитоэласты), состоящие из порошка магнито-твердого материала и эластичного связующего (каучук, резина).

Остаточная индукция у металлопластических и магнитоэластических магнитов на 20—30% меньше по сравнению с литыми магнитами из тех же магнито-твердых материалов (альни, альнико и др.).

Ферриты

Ферриты представляют собой неметаллические  магнитные материалы, изготовленные из смеси специально подобранных окислов металлов с окисью железа. Название феррита определяется названием двухвалентного металла, окисел которого входит в состав феррита. Так, если в состав феррита входит окись цинка, то феррит называется цинковым; если в состав материала добавлена окись марганца — марганцевым.

В технике находят применение сложные (смешанные) ферриты, имеющие более  высокие значения магнитных характеристик  и большее удельное сопротивление  по сравнению с простыми ферритами. Примерами сложных ферритов являются никель-цинковый, марганцево-цинковый и др.

Все ферриты — вещества поликристаллического строения, получаемые из окислов металлов в результате спекания порошков различных  окислов при температурах 1100-1300°  С. Ферриты могут обрабатываться только абразивным инструментом. Они являются магнитными полупроводниками. Это позволяет применять их в магнитных полях высокой частоты, т. к. потери у них на вихревые токи незначительны.

 

 

 

 

 

 

 

 

 

 

 

 

Заключение

Мы рассмотрели все группы и  виды диэлектриков, применяемых в наше время в энергетике. Диэлектрические материалы имеют чрезвычайно важное значение для электротехники. Они используются для создания электрической изоляции, которая окружает токоведущие части электрических устройств и отделяет друг от друга части, находящиеся под различными электрическими потенциалами. Назначение электрической изоляции- не допускать прохождения электрического тока по каким- либо нежелательным путям, помимо тех случаев, которые предусмотрены электричесой схемой устройства. Кроме того, электроизоляционные материалы используются в качестве диэлектриков в электрических конденсаторах для создания определенного значения электрической емкости конденсатора, а в некоторых случаях для обеспечения определенного вида зависимости этой емкости от температуры или иных факторов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Библиографический список

 

 

1. Барфут Дж., Тейлор Дж. Полярные  диэлектрики и их применения. М.: Мир, 1981

 

2.Богородицкий Н.П., Пашков В.В,  Тареев Б.М. Электротехнические  материалы. Л.: Энергия, 1977

 

3.Гриднев С.А. Диэлектрики с метастабильной электрической поляризацией. М.: Высш. шк., 1997.

 

4. Лайнс М., Гласс А. Сегнетоэлектрики и родственные им материалы. М.: Мир, 1981.

 

5. Пасынков В.В., Сорокин В.С. Материалы электронной техники. М.: Высш. шк., 1986.

 

6.Прохоров А.М. Советский энциклопедический словарь. М.: Сов. энц., 1982

 

7. http://bio.freehostia/com

 

 

 

 

 

 

 

 

 

 


Информация о работе Виды диэлектриков