Виды диэлектриков

Автор работы: Пользователь скрыл имя, 26 Ноября 2013 в 16:58, курсовая работа

Описание работы

Электроизоляционные материалы подразделяются по их агрегатному состоянию на газообразные, жидкие и твердые. В особую группу могут быть выделены твердеющие материалы, которые в исходном состоянии, во время введения их в изготавливаемую изоляцию, являются жидкостями, но потом отвердевают. Большое практическое значение имеет также разделение электроизоляционных материалов в соответствии с их химической природой на органические и неорганические

Содержание работы

Введение………………………………………………………………………………………3
Электроизоляционные масла………………………………………………………………...4
Жидкие синтетические диэлектрики………………………………………………………..7
Газообразные диэлектрики…………………………………………………………………..9
Битумы……………………………………………………………………………………….10
Смолы………………………………………………………………………………………...11
Воскообразные диэлектрики………………………………………………………………..16
Лаки и компаунды…………………………………………………………………………...17
Волокнистые материалы…………………………………………………………………….25
Текстильные ткани……………………………………………………………………………30
Гибкие пленки………………………………………………………………………………...33
Пластические массы……………………………………………………………………….....34
Эластомеры…………………………………………………………………………………...39
Керамические диэлектрические материалы………………………………………………..44
Слюды…………………………………………………………………………………………48
Асбест………………………………………………………………………………………....51
Магнитные материалы…………………………………………………………………….....53
Заключение……………………………………………………………………………………55
Библиографический список……………………………………………………………….....56

Файлы: 1 файл

Виды диэлектриков.doc

— 943.00 Кб (Скачать файл)

Стеклобумослюдинитовая  лента — рулонный, гибкий в холодном состоянии материал, состоящий из слюдинитовой бумаги, стеклосетки и микалентной бумаги, склеенных и пропитанных эпоксидно-полиэфирным лаком. С поверхности ленту покрывают липким слоем компаунда. Выпускают ее в роликах шириной 15, 20, 23, 30, 35 мм.

Стеклослюдинитоэлектрокартон — листовой материал, гибкий при комнатной температуре. Он получается в результате склеивания слюдинитовой бумаги, электрокартона и стеклоткани при помощи лака. Выпускается в листах размером 500 х 650 мм.

Слюдопластовые электроизоляционные  материалы

Все слюдопластовые материалы изготовляются  путем склеивания и прессования  листов слюдопластовой бумаги. Последнюю  получают из непромышленных отходов слюды в результате механического дробления частиц упругой волной. По сравнению со слюдинитами слюдопластовые материалы обладают большей механической прочностью, но менее однородны, т. к. состоят из частиц большей величины, чем слюдиниты. Важнейшими слюдопластовыми электроизоляционными материалами являются следующие.

Слюдопласт коллекторный — твердый листовой материал, калиброванный по толщине. Получается горячим прессованием листов слюдопластовой бумаги, предварительно покрытых слоем клеящего состава. Выпускается в листах размером 215 х 465 мм.

Слюдопласт прокладочный — твердый листовой материал, изготавливаемый горячим прессованием листов слюдопластовой бумаги, покрытых слоем связующего вещества. Выпускается в листах размером 520 х 850 мм.

Слюдопласт формовочный — прессованный листовой материал, твердый в холодном состоянии и способный формоваться в нагретом. Выпускается в листах размером от 200 х 400 мм до 520 х 820 мм.

Слюдопласт гибкий — прессованный листовой материал, гибкий при комнатной температуре. Выпускается в листах размером от 200 х 400 мм до 520 х 820 мм. Стеклослюдопласт гибкий — прессованный листовой материал, гибкий при комнатной температуре, состоящий из нескольких слоев слюдопластовой бумаги, оклеенных с одной стороны стеклотканью, а с другой — стеклосеткой или с обеих сторон стеклосеткой. Выпускается в листах размером от 250 х 500 мм до 500 х 850 мм.

Слюдопластофолий  — рулонный или листовой материал, гибкий и формуемый в нагретом состоянии, получаемый склеиванием нескольких листов слюдопластовой бумаги и оклеенный с одной стороны телефонной бумагой или без нее.

Слюдопластолента — гибкий при комнатной температуре рулонный материал, состоящий из слюдопластовой бумаги, оклеенной микалентной бумагой с обеих сторон. Этот материал выпускается в роликах шириной 12, 15, 17, 24, 30 и 34 мм.

Стеклослюдопластолента  нагревостойкая — гибкий при комнатной температуре материал, состоящий из одного слоя слюдопластовой бумаги, оклеенной с одной или с двух сторон стеклотканью или стеклосеткой с помощью кремнийорганического лака. Материал выпускается в роликах шириной 15, 20, 25, 30 и 35 мм.

 

Асбест

– группа волокнистых минералов, которые  по химическому составу относятся  к гидросиликатам. Различают два  основных типа асбеста: серпентин-асбест и амфиболасбест. Серпентин – весьма распространенный минерал, его волокнистая форма – хризотил (Mg,Fe)6[Si4O10](OH)6 с примесями Cr2O3, NiO, MnO, CoO, СаО, Al2O3. При нагревании до 400оС хризотил начинает отщеплять воду, при 700–750о С разрушается его кристаллическая структура, а при 1550о С минерал плавится. Хризотил разлагается под действием соляной и серной кислот. Амфибол имеет сходный состав, но отличается более высокой кислото- и огнеупорностью и не изменяется при нагреве до 920–940° С. К группе амфиболов принадлежит также роговая обманка и известный минерал нефрит.

Асбест окрашен в белый, зеленоватый, желтоватый или серый цвет. Он встречается  в рудных жилах обычно неглубоко  от поверхности. Поэтому его месторождения  разрабатываются, в основном, открытым способом. Иногда агрегаты асбеста достигают метровой длины, но чаще имеют форму щетины, растущей перпендикулярно стенкам горной жилы. Внешний вид асбеста бывает разным: минерал может напоминать кору дерева, ветки, седые волосы. А.Е.Ферсман в 1908 описал минералы, в которых волокна не вытянуты в одном направлении, а образуют сложные переплетения. Такой асбест иногда называют «горной кожей», «горной корой» или «горным деревом». Наиболее ценные сорта асбеста полупрозрачны и обладают шелковистым блеском. Некоторые его образцы по блеску и гибкости напоминают шелк; такой асбест на Руси когда-то называли горным льном.

Отличительная и уникальная черта  асбеста – рост его кристаллов только в одном направлении, в  результате чего их длина может в  десятки тысяч раз превышать  толщину и доходить до нескольких сантиметров. По той же причине асбест при механическом воздействии легко расщепляется на тончайшие (меньше длины волны света) прочные эластичные волокна. Строение этих волокон и секрет их гибкости удалось разгадать только после изобретения электронного микроскопа. Оказалось, что асбестовые волоконца внутри пустые: их внутренний диаметр равен 13 нм при внешнем 26 нм. Эти волоконца сплетены в более толстые нити, длина которых может достигать 5 см и более.

Тонковолокнистое строение природного асбеста позволяло делать из него пряжу, а из нее – несгораемые ткани.

В присутствии полимерных связующих  из асбестового волокна получают асбоволокнит, из бумаги – асбогетинакс, из тканей – асботекстолит. Доля асбеста  в этих асбопластиках может составлять от 50 до 70%. Такие композиционные материалы применяют для изготовления коллекторов электрических машин, лопаток насосов, дисков сцепления и тормозных колодок, деталей химических аппаратов, теплозащитных покрытий ракет и космических аппаратов. Но основная доля добываемого асбеста (около 80%) потребляется в строительстве, например, для изготовления шифера – распространенного кровельного материалы. Многие видели асбоцементные трубы, которым не страшна коррозия; их используют и как водопроводные, и как канализационные. Большая потребность в асбесте привела к тому, что его добыча в течение 20 в. выросла почти в 200 раз и в настоящее время исчисляется миллионами тонн в год.

Асбестоцемент, строительный материал, изготовляемый из водной смеси цемента и асбеста (рис.7). На 100 частей (по массе) портландцемента марки 500 и выше расходуется от 12 до 20 частей асбеста преимущественно низких сортов. Благодаря армирующему эффекту волокон асбеста Асбестоцемент до начала схватывания цемента обладает достаточной прочностью на растяжение и пластичностью, позволяющими из листа толщиной 5—10 мм формовать изделия различной формы. В затвердевшем состоянии Асбестоцемент обладает высокими физико-механическими свойствами: предел прочности при изгибе до 30 Мн/м2 (300 кгс/см2), при сжатии до 90 Мн/м2 ударная вязкость в пределах 1800—2500 дж/м2 (1,8—2,5 кгс см/см2). Асбестоцемент долговечен, морозостоек (потеря не более 10% прочности после 50 циклов замораживания-оттаивания), практически водонепроницаем, огнестоек, имеет повышенную (сравнительно с бетонными изделиями) химическая стойкость. Плотность Асбестоцемент — 1550—1950 кг/м2 Недостатки Асбестоцемент: подверженность хрупкому разрушению и деформативность при изменении влажности, снижение которых достигается гидрофобизацией и дополнительным армированием.

 Асбестоцемент изготовляют  на заводах на листоформовочных  машинах (перспективны методы  непрерывной прокатки, полусухой  способ формования и др.).  Асбестоцемент  выпускают обычно без дополнительной  окраски (серого цвета), иногда применяют окраску в массе или с поверхности, а также покрытия            защитными плёнками (см. Асбестоцементная                Рис.7 Асбестоцемент.             промышленность, Асбестоцементные изделия и конструкции).

Асбестоцемент - строительный материал, изготовляемый из водной смеси цемента и асбеста. На 100 частей (по массе) портландцемента марки 500 и выше расходуется от 12 до 20 частей асбеста преимущественно низких сортов. Благодаря армирующему эффекту волокон асбеста А. до начала схватывания цемента обладает достаточной прочностью на растяжение и пластичностью, позволяющими из листа толщиной 5-10 мм формовать изделия различной формы. Асбестоцемент можно рассматривать как тонкоармированный цементный камень, в котором волокна асбеста, обладающие высокой прочностью при растяжении, воспринимают растягивающие напряжения, а цементный камень - сжимающие.

Минеральные электроизоляционные  материалы

К минеральным электроизоляционным  материалам относятся горные породы: слюда, мрамор, шифер, талькохлорит и базальт. Также к этой группе относятся материалы, получаемые из портландцемента и асбеста (асбестоцемент и асбопласт). Вся эта группа неорганических диэлектриков отличается высокой стойкостью к электрической дуге и обладает достаточно высокими механическими характеристиками. Минеральные диэлектрики (кроме слюды и базальта) поддаются механической обработке, за исключением нарезания резьбы.

Электроизоляционные изделия из мрамора, шифера и талькохлорита получают в виде досок для панелей и электроизоляционных оснований для рубильников и переключателей низкого напряжения. Точно такие же изделия из плавленого базальта можно получить только методом литья в формы. Чтобы базальтовые изделия обладали необходимыми механическими и электрическими характеристиками, их подвергают термической обработке с целью образования в материале кристаллической фазы.

Электроизоляционные изделия из асбестоцемента и асбопласта представляют собой доски, основания, перегородки и дугогасительные камеры. Для изготовления такого рода изделий используют смесь, состоящую из портландцемента и асбестового волокна. Изделия из асбопласта получают холодным прессованием из массы, в которую добавлено 15% пластичного вещества (каолина или формовочной глины). Этим достигается большая текучесть исходной прессовочной массы, что позволяет получать из асбопласта электроизоляционные изделия сложного профиля.

Основным недостатком многих минеральных  диэлектриков (за исключением слюды) является невысокий уровень их электрических  характеристик, вызванный большим  количеством имеющихся пор и наличием оксидов железа. Такое явление позволяет использовать минеральные диэлектрики только в устройствах низкого напряжения.

В большинстве случаев все минеральные  диэлектрики, кроме слюды и базальта, перед применением пропитывают парафином, битумом, стиролом, бакелитовыми смолами и др. Наибольший эффект достигается при пропитке уже механически обработанных минеральных диэлектриков (панели, перегородки, камеры и др.).

Мрамор и изделия из него не переносят  резких изменений температуры и растрескиваются. Шифер, базальт, талькохлорит, слюда и асбестоцемент более устойчивы к резким сменам температур.

 

Магнитные материалы

 

Величины, с помощью которых  оцениваются магнитные свойства материалов, называются магнитными характеристиками. К ним относятся: абсолютная магнитная проницаемость, относительная магнитная проницаемость, температурный коэффициент магнитной проницаемости, максимальная энергия магнитного поля и пр. Все магнитные материалы делятся на две основные группы: магнитно-мягкие и магнитно-твердые.

Магнитно-мягкие материалы отличаются малыми потерями на гистерезис (магнитный  гистерезис — отставание намагниченности  тела от внешнего намагничивающего поля). Они имеют относительно большие  значения магнитной проницаемости, малую коэрцитивную силу и относительно большую индукцию насыщения. Данные материалы применяются для изготовления магнитопроводов трансформаторов, электрических машин и аппаратов, магнитных экранов и прочих устройств, где требуется намагничивание с малыми потерями энергии.

Магнитно-твердые материалы отличаются большими потерями на гистерезис, т. е. обладают большой коэрцитивной силой  и большой остаточной индукцией. Эти материалы, будучи намагниченными, могут длительное время сохранять  полученную магнитную энергию, т. е. становятся источниками постоянного магнитного поля. Магнитно-твердые материалы применяются для изготовления постоянных магнитов.

Согласно своей основе, магнитные  материалы подразделяются на металлические, неметаллические и магнитодиэлектрики. К металлическим магнитно-мягким материалам относятся: чистое (электролитическое) железо, листовая электротехническая сталь, железо-армко, пермаллой (железоникелевые сплавы) и др. К металлическим магнитно-твердым материалам относятся: легированные стали, специальные сплавы на основе железа, алюминия и никеля и легирующих компонентов (кобальт, кремний и пр.). К неметаллическим магнитным материалам относятся ферриты. Это материалы, получаемые из порошкообразной смеси окислов некоторых металлов и окиси железа. Отпрессованные ферритовые изделия (сердечники, кольца и др.) подвергают обжигу при температуре 1300—1500° С. Ферриты бывают магнитно-мягкие и магнитно-твердые.

Магнитодиэлектрики — это композиционные материалы, состоящие из 70—80% порошкообразного магнитного материала и 30—20% органического высокополимерного диэлектрика. Ферриты и магнитодиэлектрики отличаются от металлических магнитных материалов большими значениями удельного объемного сопротивления, что резко снижает потери на вихревые токи. Это позволяет использовать эти материалы в технике высоких частот. Кроме этого, ферриты обладают стабильностью своих магнитных характеристик в широком диапазоне частот.

Электротехническая  листовая сталь

Электротехническая сталь является магнитно-мягким материалом. Для улучшения  магнитных характеристик в нее добавляют кремний, который повышает величину удельного сопротивления стали, что приводит к уменьшению потерь на вихревые токи. Такая сталь выпускается в виде листов толщиной 0,1; 0,2; 0,35; 0,5; 1,0 мм, шириной от 240 до 1000 мм и длиной от 720 до 2000 мм.

Информация о работе Виды диэлектриков