Шпаргалка по "Математике"

Автор работы: Пользователь скрыл имя, 03 Марта 2013 в 19:34, шпаргалка

Описание работы

№1. а)Понятие матрицы. б)Виды матрицы. в)Транспонирование матрицы. г)Равенство матриц. д)Алгебраические операции над матрицами: умножение на число, сложение, умножение матриц.
№4. а)Понятие минора к-го порядка. б)Ранг матрицы(определение).в)Вычисление ранга матрицы с помощию элементарных преодразований.Пример.
№11 Теорема и формулы Крамера решения системы n линейных уравнений с n переменными (без вывода).
№12 Понятие функции, способы задания ф-ций. Область определения. Четные и нечетные, ограниченные, монотонные функции.

Файлы: 1 файл

ответы математика.doc

— 264.50 Кб (Скачать файл)

 ∆2=|А|=|а11а12|=а11а2212а21.-члены определителя.

             |а21а22 |

Определителем матрицы 3-го порядка кот вычисляется по формуле: ∆3=|А|=а11а22а3312а23а3221а32а1331а22а1312а21а3332а23а11.

Определителем квадратной матрицы n-го порядка наз число =алгебраической сумме п! членов, каждый из кот явл произведением п элементов матрицы, взятых по одному из каждой строки и каждого столбца, причем знак каждого члена определяется как (-1)r(J)где r(J)-число инверсий в перестановке J из номеров столбцов элементов матрицы, если при этом номера строк записаны в порядке возрастания: ∆=|А|=∑(J)(-1)r(J)a1j1a2j2…anjn.

C-ва:1) если какая-либо строка (столбец) матрицы сост из одних нулей, то ее определитель=0. 2) если все элементы какой-либо строки (столбца) матрицы умножить на число λ, то ее определитель умножится на это число. 3) При транспонировании матрицы ее определитель не изменяется |A/|=|A|. 4) при перестановке двух строк (столбцов) матрицы ее определитель меняет знак на противоположный. 5) если квадратная матрица содержит две одинаковые строки(столбца), то ее определитель=0.  6) если элементы двух строк (столбцов) матрицы пропорциональны, то ее определитель равен 0. 7) сумма произведений элементов какой-либо строки(столбца) матрицы на алгебраичские дополнения элементов др строки (столбца) этой матрицы равна 0. 8) определитель матрицы не изменится, если к элементам какой-либо строки(столбца) матрицы прибавить элементы др строки(столбца), предварительно умноженные на одно и тоже число. 9) Сумма произведений произвольных чисел на алгебраические дополнения элементов любой строки(столбца) = определителю матрицы, полученной из данной заменой элементов этой строки(столбца) на числа b1,b2,…,bn. 10) определитель произведения двух квадратных матриц= произведению их определителей.

б)Определитель п-го порядка = сумме произведения элементов какой-либо строки или столбца на их алгебраические дополнения. ∆=аi1Ai1+ai2Ai2+…+ainAin. –разложение по  строке. ∆=aijA1j+a2jA2j+…+anjAnj- разложение по столбцу.

 

№3.а)Квадратная матрица и ее определитель. б)Особенная  и неособенная квадратные матрицы. в)Присоединенная матрица. г)Матрица, обратная данной, и алгоритм ее вычисления.

а)Если кол-во строк= кол-ву столбцов, то такая матрица наз квадратной размером m×m(матрица порядка m). Понятие определитель приминяется только для квадратных матриц, detA,(А),∆. Определителем кв матрицы А наз число, кот вычисляется по след правилам: 1) А=(а11) detA=а11. 2) А=(а11а12) detA=а11а2212а21.

                                                              (а21а22)

3) А=(а11а12а13)

         (а21а22а23)

         (а31а32а33)

Для 3) правилом ∆(Саррюса). detA=а11а22а3313а21а3231а12а2331а22а1311а32а2333а21а12.

4) Определитель п-го порядка – сумме произведения элементов какой-либо строки или столбца на их алгебраические дополнения. ∆=аi1Ai1+ai2Ai2+…+ainAin. –разложение по  строке. ∆=aijA1j+a2jA2j+…+anjAnj- разложение по столбцу.Аij=(-1)i+jMij- алгеброическое дополнение.

в,г)Пусть матрица А- кв. Матрица А-1-наз обратной к матрице А, если выполняется усл: А-1А=АА-1=Е. Мариица наз невыражденной, если ее определитель не =0, в противнос случае матрица-выражденная. Теорема(необходимое и достаточное усл сущ обратной матрицы):Обратная матрица А-1сущ единственно тогда и только тогда, когда исходная матрица невыражденная и вычисляется по формуле А-1= 1/ detA×А~, А~-присоединенная матрица сост из алгебраических дополнений транспонированной матрицы

А~= (А11А21…Ап112А22…Ап2/…/А1пА2п…Апп). Схема вычисления обр матрицы:

1) вычисляем определитель  матрицы. Если определитель равен  нулю , то матрица вырожденная  и обратной матрицы не сущ.  Если detA не=0, то: 2) вычисляем алгебраические дополнения и составляем присоединенную матрицу А~. 3) Составляем обратную матрицу по формуле: А-1= 1/ detA×А~. 4) Выполняем проверку: А-1А=Е.

 

№8. а)Система т линейных уравнений  с п переменными (общий вид). б)Матричная  форма записи такой системы. в)Решение  системы(определение).г)Совместные и  несовместные, определенные и неопределенные системы линейных уравнений.

а) Система т линейных ур-ний с п переменными имеет вид:

11х112х213х3+…+а1пхп=b1

{ а21х122х223х3+…+а2пхп=b2

{……………………………….

{ ат1х1т2х2т3х3+…+атпхп=bт

б) Систему Ур-ний ↑ можно записать в матричной форме: А- матрица системы сост из коэффициентов при неизвестных. Х-матрица неизвестных, В-матрица-столбец свободных членов.

     (а11  а12   а13  …а1п)         (х1)         (b1)

А=( а21  а22  а23  …а2п)   Х= (х2)   В= (b2)

     (…………………..)        (…)         (…)

     ( ат1  ат2 ат3… атп)        (хп)          (bn)

  Система ур-ния  в матричной форме  имеет  вид Ах=В.

в)Решением системы наз такая совокупность п чисел (х11,х22,…, хпп), при подстановке кот каждое ур-ние системы обращается в верное равенство.

г)Система ур-ний наз совместной,если она имеет хотя бы одно  решение, несовместной, если не имеет решений. Совместная система ур-ний наз определенной,если имеет ед решение, и неопределенной,если имеет более 1 решения.

 

№9. а) метод Гаусса решения системы п-линейных ур-ний с п переменными. б)Понятие о методе Жордана-Гаусса.

Метод Гаусса – метод послед-го исключ.переменных.

Сначала(на 1-м шаге прямого  хода Гаусса) из всех ур-ний,кроме 1-го исключается  переменная х1. Потом (на 2 шаге) из всех ур-й,кроме первых 2-х исключается переменная х2 и т.д.,пока последнее ур-е не приобретёт вид:С * Хn=bm, если ч-ло С=0, а bm не=0,то с-ма не совместная,т.е.нет решений. Если С=0 и bm=0,т.е. 0*Хn=0,то с-ма неопределённая,т.е. имеет бескон.мн.реш.,то с-ма совместно-определённая. В этом сл-е Хn=bn/C

Полученное зн-е Хn подстав.в предпосл.ур-е,находим Хn-1 и тд.,пока не получ.все неизв-е.

Обратный ход Гаусса. Из м-цы ступенч.вида записывается ур-е. Далее,начиная с конца находим  все переменные. Допустим Х4. Подставляем в верхнее и нах-м Х3 и т.д.

Метод Гаусса — Жордана исп-ся для реш.квадр.систем лин.ур-ний, нахождения обрат.м-цы, отыскания ранга м-цы. Метод явл-ся модификацией метода Гаусса. Назван в честь Гаусса и Жордана.

Теорема Кронекера-Капелли. Сист.лин.ур-й совмест.тог.и т.тог,ког.ранг м-цы сист.А равен рангу расшир.м-цы (А|B) этой с-мы.

r<m – ур-я с-мы(строки расш.м-цы)зависимые;

r=m –ур-я с-мы (стр.расш.м.)независимые;

r(A)не=r(A|B)- с-ма несовм-ная;

r(A)=r(A|B)=r – с-ма совм-ная;

r<n – с-ма неопред.(бескон.мн.реш.);

r=n – с-ма опред-ная (единств.реш.)

Если у сист.ур-ния есть реш-е,то такая система совместна,если решения ур-я нет, то не совместная.

Если система лин.ур-й имеет единств.решение Х=(х12,…хn),то такая сист.наз.определённой. Если СЛУ имеет больше, чем одно реш-е,то такая сист.не определённая.

 

№10. Решение систем п линейных уравнений  с п переменными с помощью  обратной матрицы (вывод формулы  Х=А-1В.

Рассм систему линейных ур-ний состоящую  из п-ур-ний и п неизвестных:

11х112х213х3+…+а1пхп=b1

{ а21х122х223х3+…+а2пхп=b2

{……………………………….

{ ап1х1п2х2п3х3+…+аппхп=bп

Если матрица системы невырожденная (detA ≠0), то систему можно решить:1)матричным способом (метод обратной матрицы),2)По правилу Крамера, 3) методом Гаусса. Рассм 1 метод: Данная система в матричной форме имеет вид Ах=В, где А- матрица системы. Х-матрица неизвестных, В-матрица-столбец свободных членов.

 

     (а11  а12   а13  …а1п)         (х1)         (b1)

А=( а21  а22  а23  …а2п)   Х= (х2)   В= (b2)

     (…………………..)        (…)         (…)

     ( ап 1  ап2 ап3… апп)          (хп)          (bn)

Т к detA ≠0, то сущ. обратная матрица А-1: А-1(АХ)=А-1В; А-1(АХ)=(А-1А)Х=ЕХ=Х;Х=А-1В

 

 

 

 

№15. а)Общее ур-ние прямой на плоскости, его исследование. б)Условия параллельности и перпендикулярности прямых.

а)Запишем ур-ние прямой с к=1: у=kх+b; -kx+y-b=0; -kx→Ax,y→By.-b→C;Ax+By+C=0-ур-ние прямой.Частные случай ур-ния Ах+Ву+С=0: 1) А=0,следов. Ву+С=0, В,С-const.у=-С/В. Прямая || оси ОХ. А=С=0,следов. у=0-прямая совпадает с осью ОХ.

2) В=0,следов. Ах+С=0, А,С- const. Х=-С/А. А≠0. Прямая || оси ОУ. В=С=0,следов. х=0- прямая совпадает с осью ОУ.

3) С=0, следов. Ах+Ву=0. у=-А/В×х-прямая  проходит ч/з начало координат. 

б)1. Если прямая L1|| L2,следов. φ =0, tg φ=0, следов. k1=k2-условие || двух прямых.

2. L1┴ L2, тогда φ =π/2, следов. tg π/2-неопределен. сtg π/2=0, следов. сtgφ=1/tgφ=(1+k1k2)/( k2- k1). сtgφ=0, следов. 1+k1k2=0, k1k2= -1-условие ┴ двух  прямых.

 

 

№18. а)Бесконечно малая величина (определение). б)Св-ва бесконечно малых (1 док-ть)

а)Функция L(х) наз бесконечно малой величиной при х→хо, или при х→∞, если ее предел =0. Lim х→ хо (∞)L(х)=0.

б)Св-ва: 1) Алгебраическая сумма конечного числа бесконечно малых величин есть величина бесконечно малая. 2) Произведение бесконечно малой величины на ограниченную ф-цию (постоянную, бесконечно малую) есть величина бесконечно малая. 3) Частное от деления бесконечно малой величины на ф-цию, предел кот отличен от 0, есть величина бесконечно малая.

Докажем 1о: По усл L(х) и В(х)-бесконечно малые при х→хо,следов. для любого Е/=Е/2>0, найдутся δ1>0, δ2>0, что для всех х≠ хо и удовлетворяющих условиям: |х-хо|< δ1 и |х-хо|< δ2 выполняются соответственно неравенства |L(х)|<E/2 и |В(х)|<E/2. Если взять δ=min{δ1;δ2}, то неравенству |х-хо|< δ будут удовлетворять решения неравенств |х-хо|< δ1 и |х-хо|< δ2, следов. неравенства |L(х)|<E/2 и |В(х)|<E/2 будут одновременно верны. Складывая почленно получим: |L(х)|+|В(х)|< E/2 +E/2=Е, т к |L(х)+В(х)|≤ <|L(х)|+|В(х)|-(св-во абсолют. величин.), получаем: |L(х)+В(х)| <Е. Для любого Е>0 сущ такое δ>0, что для всех и х≠ хо и |х-хо|< δ неравенство |L(х)+В(х)| <Е верно, следов. ф-ция L(х)+В(х)- есть величина бесконечно малая.

  а)Бесконечно большая величина (определение). б)Связь бесконечно малых величин  с бесконечно большими.

а)Ф-ция f(x) наз бесконечно большой величиной при х→хо, если для любого, даже сколь угодно большого положительного числа М>0, найдется такое положительное число δ>0 (зависящее от М, δ= δ(М)), что для всех х ≠ хо и удовлетворяющих условию |х-хо|< δ, будет верно неравенство | f(x) |>М. Записывается, как lim х→хо f(x)=∞ или f(x)→∞ при х→хо.

б) Теорема: Если ф-ция L(х) есть бесконечно малая величина при х→хо(х→∞), то ф-ция f(x)=1/ L(х) явл бесконечно большой при х→хо(х→∞). И обратно, если ф-ция f(x) бесконечно большая при х→хо(х→∞), то ф-ция f(x)=1/ L(х) есть величина бесконечно малая при х→хо(х→∞).

 

№21. а)Второй замечательный предел, число  е. б)Понятие о натуральных логарифмах.

а) е= limп→∞(1+1/п)п. Числом е (вторым замечательным пределом) называется предел числовой последовательности е= limп→∞(1+1/п)п ,е=2,718231… е- иррациональное число.

б) Число е (число Эйлера, неперово число) играет весьма важную роль в матиматическом анализе. Широко используются логарифмы по основанию е, наз натуральными. Обозначаются символом ln: logex=lnx.

 

 

№27.а)Формулы  производных основных элементарных ф-ций (одну из них вывести). б)Производная  сложной ф-ции.

а)1)С/=0; 2)х/=1; 3) (хп)/=пхп-1; 4)(х1/2)/=1/2х1/2;5)(ах)/хlna; 6)(ех)/х; 7)(logx)/=1/хlna; 8)(lnх)/=1/х;9)(sinx)/=cosx;10)( cosx)/= -sinx; 11) (tgx)/=1/ cos2x; 12) (сtgx)/= -1/ sin2x;13)(arcsinx)=1/(1-х2)1/2; 14) (arctgx)/=1/(1+х2); 15) (arccosx)/= 1/(1-х2)1/2;   16) (arcсtgx)/=-1/(1+х2);17) (lgx)/=1/xln10.

Информация о работе Шпаргалка по "Математике"