Товароведение и экспертиза качества муки пшеничной

Автор работы: Пользователь скрыл имя, 06 Апреля 2013 в 23:07, курсовая работа

Описание работы

Пшеничная мука - пожалуй, самая популярная в мире мука для выпечки. Она бывает нескольких видов. В муке высшего сорта (на некоторых упаковках пишется слово «экстра»), довольно мало клейковины, а на вид она совсем белая. Такая мука идеально подходит для сдобных изделий, её часто применяют как загуститель в соусах. Мука первого сорта хороша для несдобной выпечки, а изделия неё черствеют гораздо медленнее. Во Франции из пшеничной муки первого сорта принято печь хлеб. Что же касается муки второго сорта, то в ней до 8% отрубей, поэтому она гораздо темнее первосортной. Именно из неё делают несдобные изделия и обычный белый хлеб, а смешав с ржаной мукой - чёрный.

Файлы: 1 файл

курсовая.4 курс.docx

— 75.57 Кб (Скачать файл)

Белки ржаной муки. По аминокислотному  составу и свойствам белки  ржаной муки отличаются от белков пшеничной  муки. Ржаная мука содержит много водорастворимых  белков (около 36 % от общей массы белковых веществ) и солерастворимых (около 20%). Проламиновая и глютелиновая фракции  ржаной муки значительно ниже по массе, в обычных условиях клейковину не образуют. Общее содержание белковых веществ в ржаной муке несколько ниже, чем в пшеничной (10-14%). В особых условиях из ржаной муки можно выделить белковую массу, напоминающую по эластичности и растяжимости клейковину.

Гидрофильные свойства ржаных белков специфичны. Они быстро набухают при смешивании муки с водой, причем значительная часть их набухает неограниченно (пептизируется), переходя в коллоидный раствор. Пищевая ценность белков ржаной муки выше, чем у белков пшеницы, так как в них содержится больше незаменимых в питании аминокислот, особенно лизина.

Углеводы. В углеводном комплексе муки преобладают высшие полисахариды (крахмал, клетчатка, гемицеллюлоза, пентозаны). В небольшом количестве мука содержит сахароподобные полисахариды (ди- и трисахариды) и простые сахара (глюкоза, фруктоза).

Крахмал. Крахмал - важнейший углевод муки, содержится в виде зерен размером от 0,002 до 0,15 мм. Размер, форма, способность к набуханию и клейстеризации крахмальных зерен различны для муки различных видов. Крупность и целость крахмальных зерен влияет на консистенцию теста, его влагоемкость и содержание в нем сахара. Мелкие и поврежденные зерна крахмала быстрее осахариваются в процессе приготовления хлеба, чем крупные и плотные зерна.

В крахмальных зернах, кроме  собственно крахмала, содержится незначительное количество фосфорной, кремниевой и  жирных кислот, а также других веществ.

Структура зерен крахмала кристаллическая, тонкопористая. Крахмал  характеризуется значительной адсорбционной  способностью, вследствие чего он может  связывать большое количество воды даже при температуре 30°С, т. е. при температуре теста.

Крахмальное зерно неоднородно, оно состоит из двух полисахаридов: амилозы, образующей внутреннюю часть  крахмального зерна, и амилопектина, составляющего его наружную часть. Количественные соотношения амилозы  и амилопектина в крахмале различных  злаков составляют 1 : 3 или 1 : 3,5.

Амилоза отличается от амилопектина меньшей молекулярной массой и более  простым строением молекулы. Молекула амилозы состоит из 300-800 глюкозных остатков, образующих прямые цепи. Молекулы амилопектина имеют разветвленное строение и содержат до 6000 глюкозных остатков. При нагревании крахмала с водой амилоза переходит в коллоидный раствор, а амилопектин набухает, образуя клейстер. Полная клейстеризация крахмала муки, при которой его зерна теряют форму, осуществляется при соотношении крахмала и воды 1 : 10.

Подвергаясь клейстеризации, крахмальные зерна значительно  увеличиваются в объеме, становятся рыхлыми и более податливыми  действию ферментов. Температура, при  которой вязкость крахмального студня наибольшая, называется температурой клейстеризации крахмала. Температура  клейстеризации зависит от природы  крахмала и от ряда внешних факторов: рН среды, наличия в среде электролитов и др. 
Температура клейстеризации, вязкость и скорость старения крахмального клейстера у крахмала различных видов неодинакова. Ржаной крахмал клейстеризуется при температуре 50-55°С, пшеничный при 62-65°С, кукурузный при 69-70 °С. Такие особенности крахмала имеют большое значение для качества хлеба.

Клетчатка. Клетчатка (целлюлоза) находится в периферийных частях зерна и потому в большом количестве содержится в муке высоких выходов. В обойной муке содержится около 2,3 % клетчатки, а в муке пшеничной высшего сорта 0,1-0,15 %. Клетчатка не усваивается организмом человека и снижает пищевую ценность муки. В отдельных случаях высокое содержание клетчатки полезно, так как ускоряет перистальтику кишечного тракта.

Гемицеллюлозы. Это полисахариды, относящиеся к пентозанам и гексозанам. По физико-химическим свойствам они занимают промежуточное положение между крахмалом и клетчаткой. Однако организмом человека гемицеллюлозы не усваиваются. Пшеничная мука в зависимости от сорта имеет различное содержание пентозанов - основной составной части гемицеллюлозы. В муке высшего сорта содержится 2,6 % всего количества пентозанов зерна, а в муке II сорта - 25,5%. Пентозаны делятся на растворимые и нерастворимые. Нерастворимые пентозаны хорошо набухают в воде, поглощая воду, в количестве, превышающем их массу в 10 раз. Растворимые пентозаны или углеводные слизи дают очень вязкие растворы, которые под влиянием окислителей переходят в плотные гели. Пшеничная мука содержит 1,8-2 % слизей, ржаная - почти в два раза больше.

Липиды. Липидами называются жиры и жироподобные вещества (липоиды). Все липиды нерастворимы в воде и растворимы в органических растворителях. Общее содержание липидов в целом зерне пшеницы около 2,7 %, а в пшеничной муке 1,6-2 %. В муке липиды находятся как в свободном состоянии, так и в виде комплексов с белками (липопротеиды) и углеводами (гликолипиды). Последние исследования показали, что связанные с белками клейковины липиды значительно влияют на ее физические свойства.

Жиры. Жиры - сложные эфиры глицерина и высокомолекулярных жирных кислот. В пшеничной и ржаной муке различных сортов содержится 1-2 % жира. Жир, находящийся в муке, имеет жидкую консистенцию. Он состоит в основном из глицеридов ненасыщенных жирных кислот: олеиновой, линолевой (преимущественно) и линоленовой. Эти кислоты имеют высокую пищевую ценность, им приписывают витаминные свойства. Гидролиз жира во время хранения муки и дальнейшие превращения свободных жирных кислот существенно влияют на кислотность, вкус муки и на свойства клейковины.

Липоиды. К липоидам муки относятся фосфатиды - сложные эфиры глицерина и жирных кислот, содержащие фосфорную кислоту, соединенную с каким-либо азотистым основанием.

В муке содержится 0,4-0,7 % фосфатидов, относящихся к группе лецитинов, в которых азотистым основанием является холин. Лецитины и другие фосфатиды характеризуются высокой пищевой ценностью и имеют большое биологическое значение. Они легко образуют соединения с белками (липопротеидные комплексы), играющие важную роль в жизни каждой клетки. Лецитины - гидрофильные коллоиды, хорошо набухающие в воде. 
Являясь поверхностно-активными веществами, лецитины также хорошие пищевые эмульгаторы и улучшители хлеба.

Пигменты. К растворимым в жирах пигментам относятся каротииоиды и хлорофилл. Цвет каротиноидных пигментов муки желтый или оранжевый, а хлорофилла - зеленый. Каротииоиды обладают провитаминными свойствами, так как способны в животном организме превращаться в витамин А.

Наиболее известные каротииоиды  представляют собой ненасыщенные углеводороды. При окислении или восстановлении каротиноидные пигменты переходят  в бесцветные вещества. На этом свойстве основан процесс отбеливания  пшеничной сортовой муки, применяющийся  в некоторых зарубежных странах. Во многих странах отбеливание муки запрещено, так как оно снижает  ее витаминную ценность. Жирорастворимым  витамином муки является витамин Е, остальные витамины этой группы в муке практически отсутствуют.

Минеральные вещества. Мука состоит в основном из органических веществ и небольшого количества минеральных (зольных). Минеральные вещества зерна сосредоточены главным образом в алейроновом слое, оболочках и зародыше. Особенно много минеральных веществ в алейроновом слое. Содержание минеральных веществ в эндосперме невелико (0,3-0,5%) и повышается от центра к периферии, поэтому зольность служит показателем сорта муки.

Большая часть минеральных  веществ муки состоит из соединений фосфора (50%), а также калия (30%), магния и кальция (15 %).

В ничтожных количествах  содержатся различные микроэлементы (медь, марганец, цинк и др.). Содержание железа в золе разных сортов муки 0,18-0,26%. Значительная доля фосфора (50-70 %) представлена в виде фитина - (Са - Mg - соль инозитфосфорной кислоты). Чем выше сорт муки, тем меньше в ней находится минеральных веществ.

Ферменты. В зернах хлебных злаков содержатся разнообразные ферменты, сосредоточенные главным образом в зародыше и периферийных частях зерна. Ввиду этого в муке высоких выходов ферментов содержится больше, чем в муке низких выходов.

Ферментная активность у  разных партий муки одного и того же сорта различна. Она зависит от условий произрастания, хранения, режимов  сушки и кондиционирования зерна  перед помолом. Повышенная активность ферментов отмечена у муки, полученной из несозревшего, проросшего, морозобойного  или пораженного клопом-черепашкой зерна. Высушивание зерна при  жестком режиме снижает активность ферментов, при хранении муки (или  зерна) она также несколько уменьшается.

Ферменты активны только при достаточной влажности среды, поэтому при хранении муки влажностью 14,5 % и ниже действие ферментов проявляется  очень слабо. После замеса в полуфабрикатах начинаются ферментативные реакции, в которых участвуют гидролитические и окислительно-восстановительные ферменты муки. Гидролитические ферменты (гидролазы) разлагают сложные вещества муки на более простые водорастворимые продукты гидролиза.

Отмечено, что протеолиз  в пшеничном тесте активизируется веществами, содержащими сульфгидрильные  группы, и другими веществами с  восстанавливающими свойствами (аминокислота цистеин, тиосульфат натрия и др.).

Вещества с противоположными свойствами (со свойствами окислителей) значительно тормозят протеолиз, укрепляют  клейковину и консистенцию пшеничного теста. К ним относятся перекись кальция, бромат калия и многие другие окислители. Воздействие окислителей  и восстановителей на процесс  протеолиза сказывается уже при  очень малых дозировках этих веществ (сотые и тысячные доли % от массы  муки). Существует теория, что влияние  окислителей и восстановителей  на протеолиз объясняется тем, что  они меняют соотношение сульфгидрильных  групп и дисульфидных связей в  молекуле белка, а возможно и самого фермента. Под действием окислителей  за счет групп образуются дисульфидные связи, укрепляющие структуру белковой молекулы. Восстановители разрывают  эти связи, что вызывает ослабление клейковины и пшеничного теста. Химизм действия окислителей и восстановителей  на протеолиз окончательно не установлен.

Автолитическая активность пшеничной и особенно ржаной муки служит важнейшим показателем ее хлебопекарного достоинства. Автолитические процессы в полуфабрикатах при их брожении, расстойке и выпечке  должны протекать с определенной интенсивностью. При повышенной или пониженной автолитической активности муки в худшую сторону изменяются реологические свойства теста и характер брожения полуфабрикатов, возникают различные дефекты хлеба. Для того чтобы регулировать автолитические процессы, необходимо знать свойства важнейших ферментов муки. К основным гидролитическим ферментам муки относятся протеолитические и амилолитические ферменты.

Протеолитические ферменты. Действуют на белки и продукты их гидролиза. Наиболее важная группа протеолитических ферментов - протеиназы. Протеиназы типа папаин содержатся в зерне и муке разных злаков. Оптимальными показателями для действия зерновых протеиназ являются рН 4-5,5 и температура 45- 47 °С.

При брожении теста зерновые протеиназы вызывают частичный протеолиз  белков. Интенсивность протеолиза зависит  от активности протеиназ и от податливости белков действию ферментов.

Протеиназы муки, полученной из зерна нормального качества, мало активны. Повышенная активность протеиназ наблюдается у муки, приготовленной из проросшего зерна и особенно из зерна, пораженного клопом-черепашкой. Слюна этого вредителя содержит сильные протеолитические ферменты, проникающие при укусе в зерно. Во время брожения в тесте, приготовленном из муки нормального качества, происходит начальная стадия протеолиза без заметного накопления водорастворимого азота. В процессе приготовления пшеничного хлеба регулируют протеолитические процессы, меняя температуру и кислотность полуфабрикатов и добавляя окислители. Протеолиз несколько тормозит поваренная соль.

Амилолитические ферменты. Это р- и а-амилазы. р-Амилаза обнаружена как в проросших зернах хлебных злаков, так и в зернах нормального качества; а-амилаза содержится только в проросших зернах. Однако заметное количество активной а-амилазы обнаружено в ржаном зерне (муке) нормального качества. а-амилаза относится к металлопротеинам; в состав ее молекулы входит кальций, р- и а-амилазы находятся в муке главным образом в связанном с белковыми веществами состоянии и после протеолиза расщепляются. Обе амилазы гидролизуют крахмал и декстрины. Наиболее легко разлагаются амилазами механически поврежденные зерна крахмала, а также оклейстеризованный крахмал. Работами И. В. Глазунова установлено, что при осахаривании декстринов р-амилазой образуется в 335 раз больше мальтозы, чем при осахаривании крахмала. Нативный крахмал гидролизуется р-амилазой очень медленно. р-Амилаза, действуя на амилозу, превращает ее полностью в мальтозу. При воздействии на амилопектин р-амилаза отщепляет мальтозу только от свободных концов глюкозидных цепочек, вызывая гидролиз 50--54 % количества амилопектина. Высокомолекулярные декстрины, образующиеся при этом, сохраняют гидрофильные свойства крахмала. А-амилаза отщепляет ответвления глюкозидных цепочек амилопектина, превращая его в низкомолекулярные декстрины, не окрашиваемые йодом и лишенные гидрофильных свойств крахмала. Поэтому при действии а-амилазы субстрат значительно разжижается. Затем декстрины гидролизуются а-амилазой до мальтозы. Термолабильность и чувствительность к рН среды у обеих амилаз различны: а-амилаза по сравнению с (3-амилазой более термоустойчива, но более чувствительна к подкислению субстрата (снижению рН). р-Амилаза наиболее активна при рН среды -4,5-4,6 и температуре 45-50 °С. При температуре 70 °С р-амилаза инактивируется. Оптимальная температура а-амилазы 58-60 °С, рН 5,4-5,8. Влияние температуры на активность а-амилазы зависит от реакции среды. При снижении рН снижается как температурный оптимум, так и температура инактивации а-амилазы.

Информация о работе Товароведение и экспертиза качества муки пшеничной