Методы неразрушающего контроля

Автор работы: Пользователь скрыл имя, 11 Февраля 2013 в 16:40, реферат

Описание работы

Наибольшее развитие за последнее время получила ультразвуковая дефектоскопия. По сравнению с другими методами неразрушающего контроля она обладает важными преимуществами: высокой чувствительностью к наиболее опасным дефектам типа трещин и непроваров, большой производительностью, возможностью вести контроль непосредственно на рабочих местах без нарушения технологического процесса, низкой стоимостью контроля.

Файлы: 1 файл

Реферат по акустическим методам неразрушающего контроля.docx

— 355.16 Кб (Скачать файл)

При распространении УЗ-волн в металлах возможна реверберация —  постепенное затухание колебании, обусловленное повторными отражениями. Реверберация может быть объемной (из-за многократного отражения колебаний  от поверхностен, ограничивающих контролируемое изделие) и структурной (из-за многократного  отражения и рассеяния колебаний  границами зерен металла).

Рассеяние УЗК значительно  зависит от анизотропии кристаллов. При этом скорость по одной из осей кристалла или зерна существенно  отличается от скорости вдоль его  другой оси. У алюминиевых сплавов  и у сталей упругая межзерениая  анизотропия кристаллов обычно мала. У нержавеющих (аустенитных) сталей и чугуна явления межзеренной  анизотропии резко выражены, что  приводит к рассеянию УЗК и  плохой прозвучиваемости этих материалов.

Зависимость коэффициента затухания  от величины зерна используют для  измерения размеров зерна. При этом принимают диапазон волн примерно в  области λ=(4 - 10)D.

Коэффициент затухания выражают либо в децибелах на метр (дБ/м), либо в неперах на метр (Нп/м). Затухание 1 Нп/м означает, что на расстоянии 1 м амплитуда волны уменьшается  в е раз (е = 2,718 — основание натуральных логарифмов, или число Непера). Эти единицы связаны соотношением 1 Нп/м = 8,68 дБ/м.

В практике УЗ-дефектоскопии  коэффициент затухания часто  измеряют в Нп/см или, что то же самое, в см-1.

Вследствие значительной зависимости коэффициента затухания  ультразвука от величины зерна металла  этот коэффициент имеет весьма большие  колебания в тех изделиях, которые  склонны к образованию разнозернистой структуры, например в крупногабаритных поковках из аустенитной стали.

С ростом частоты коэффициент  затухания увеличивается, поэтому  крупнозернистые  металлы  прозвучивают обычно на более низких частотах 0,5—1,8 МГц. 

 

Трансформация УЗК.

Рассмотренные выше процессы отражения УЗ-волн относились к нормальному  их падению на границу раздела  сред. При контроле сварных швов применяют, как правило, наклонные  преобразователи с вводом УЗК  под некоторым углом к вертикали. В общем случае при падении  продольной волны наклонно под углом  β к границе двух твердых сред происходит трансформация (расщепление) этой волны (рис. 5, а). Возникают две  преломленные волны (продольная Cl' и поперечная Ct') и две отраженные  Cи Cl. Углы преломления и отражения зависят от скоростей соответствующих волн в данных средах. Эту зависимость называют законом Снеллиуса. Записанный только для преломления волн этот закон имеет вид

sinβ/Cl= sinαl/Cl'= sinαt/Ct'.

При увеличении угла падения  β, который соответствует углу плексигласовой призмы в наклонных преобразователях, углы ввода УЗК в металл αи αтакже меняются и вся диаграмма как бы поворачивается против часовой стрелки вокруг точки 0 (рис. 5, б, в). При этом сначала возможно исчезновение в прозвучиваемом металле луча Cl', а потом — луча Ct'. Углы β соответствующие исчезновению продольной, а затем поперечной волн в металле, называют соответственно первым и вторым критическими углами. Значению βкр1 отвечает угол α= 90°, а значению βкр2 угол αt=90°.

 
 


 
Рисунок 5. Отражение  и преломление продольной волны  на границе разделов двух твердых  сред

При УЗ-дефектоскопии сварных  швов во многих случаях целесообразно  вводить в металл только поперечную волну. Поэтому угол призмы наклонных  преобразователи выбирают обычно в  интервале между двумя критическими значениями:

кр1+3°)<β<(βкр2-3°).

Поправку на 2—5° вводят для большей помехозащищенности контроля: в первом случае от продольной, а во втором — от поверхностной  волны.

Акустический  тракт.

Процессы преобразования энергии УЗ-колебаний происходят в трех так называемых трактах  УЗ-дефектоскопа: электроакустическом, электрическом и акустическом.

Электроакустический тракт  — это участок схемы дефектоскопа, который состоит из пьезопреобразователей, демпферов, переходных и контактных слоев, электрических колебательных  контуров   генератора   на входе приемника.

В электроакустическом тракте электрические колебания преобразуются  в ультразвуковые и обратно, поэтому  он определяет резонансную частоту  УЗК, длительность зондирующего импульса и коэффициенты преобразования электрической  энергии в акустическую.

Электрический тракт, определяющий амплитуду зондирующего импульса и  коэффициент усиления, состоит из генератора и усилителя.

Акустическим трактом  называют путь ультразвука от излучателя до отражателя в материале и от этого отражателя до приемника. Важная задачи методики УЗ-контроля — расчет акустического тракта, т. е. оценка ослабления амплитуды эхо-сигнала в зависимости  от акустических и геометрических параметров тракта.

 

2. МЕТОДЫ УЛЬТРОЗВУКОВОГО  КОНТРОЛЯ И ИХ ПРИМЕНЕНИЕ 

 

2.1 Классификация  методов контроля 

 

Известно много акустических методов неразрушающего контроля, некоторые  из которых применяются в нескольких вариантах. Классификация акустических методов показана на рис. 1. Их делят  на две большие группы - активные и пассивные методы.

Активные методы основаны на излучении и приеме упругих  волн, пассивные - только на приеме волн, источником которых служит сам контролируемый объект.

Активные методы делят  на методы прохождения, отражения, комбинированные (использующие как прохождение, так  и отражение), импедансные и методы собственных частот.

Методы прохождения используют излучающие и приемные преобразователи, расположенные по разные или по одну сторону от контролируемого изделия. Применяют импульсное или (реже) непрерывное  излучение и анализируют сигнал, прошедший через контролируемый объект.

Исторически методы прохождения  применяли только для обнаружения  несплошностей, меняющих параметры  сквозного сигнала вследствие образования  за дефектом акустической тени. Поэтому  их называли «теневыми». Однако затем  эти методы начали использовать для  контроля прочности, пористости, структуры  и других параметров материала, не связанных  с наличием тени. Поэтому теневой  метод - частный случай метода прохождения.

 

2.2 Импульсный эхо-метод.

Эхо-метод (рис. 7) основан  на регистрации эхо-сигналов от дефекта. На экране индикатора обычно наблюдают  посланный (зондирующий) импульс I, импульс III, отраженный от противоположной поверхности (дна) изделия (донный сигнал) и эхо-сигнал от дефекта II. Время прихода импульсов II и III пропорционально глубине залегания  дефекта и толщине изделия. При  совмещенной схеме контроля (рис. 7) один и тот же преобразователь  выполняет функции излучателя и  приемника. Если эти функции выполняют  разные преобразователи, то схему называют раздельной.

 

Рисунок 7. Импульсный эхо-метод. 1 - генератор; 2 - излучатель; 3 - объект контроля; 4 - приемник; 5 - усилитель; 6 -синхронизатор; 7 - индикатор

Около 90 % объектов, контролируемых акустическими методами, проверяют  эхо-методом. Применяя различные типы волн, с его помощью решают задачи дефектоскопии поковок, отливок, сварных  соединений, многих неметаллических  материалов. Эхо-метод используют также  для измерения размеров изделий. Измеряют время прихода донного  сигнала и, зная скорость ультразвука  в материале, определяют толщину  изделия при одностороннем доступе. Если толщина изделия известна, то по донному сигналу измеряют скорость, оценивают затухание ультразвука, а по ним определяют физико-механические свойства материалов.

Чувствительность эхо-метода высокая: она достигает 0,5 ммна глубине 100 мм. К преимуществам данного метода следует также отнести возможность одностороннего доступа к зоне шва, поскольку достаточно только одного преобразователя и дли излучения и для приема УЗ-сигналов. Недостатки эхо-мегода — это сравнительно низкая помехоустойчивость и резкое изменение амплитуды отраженного сигнала от ориентации дефекта (yглa θ между УЗ-лучом и плоскостью отражателя).

2.3 Теневой и  зеркально-теневой методы УЗК.

Теневой и зеркально-теневой  методы, также широко распространенные, основаны на уменьшении амплитуды УЗ-колебаний  вследствие наличия несплошности на их пути (рис. 8). Чем крупнее дефект, тем слабее прошедший к приемнику  сигнал. В теневом методе (рис. 8, а) УЗ-луч идет прямо от генератора к приемнику через контролируемый металл. Теневой метод используют только при двустороннем доступе  к изделию для автоматического  контроля изделий простой формы, например листов в иммерсионной ванне. Перемещение листа вверх и  вниз между преобразователями в  иммерсионной ванне не изменяет времени  прохождения сигналов от излучателя к приемнику, что существенно  упрощает конструкцию установки. Чувствительность теневого метода к дефектам в 10 ... 100 раз меньше, чем эхо-метода, в связи  с большим влиянием помех.

Теневой метод применяют  также для контроля изделий с  большим уровнем структурной  реверберации, т.е. шумов, связанных  с отражением ультразвука от не-однородностей, крупных зерен, дефектоскопии многослойных конструкций и изделий из слоистых пластиков. Сквозной сигнал попадает на приемник раньше, чем структурные  реверберации, что позволяет его  зарегистрировать на фоне шумов. Теневой  метод позволяют обнаруживать крупные  дефекты в материалах, где контроль другими акустическими методами затруднен или невозможен: крупнозернистой  аустенитной стали, сером чугуне, бетоне, огнеупорном кирпиче.

Однако имеются серьезные  недостатки: необходимость двустороннего  доступа и малая точность оценки координат дефектов.

Рисунок 8. Теневой и зеркально-теневой  методы УЗК

Зеркально-теневой метод  отличается от теневого тем, что регистрирует уменьшение УЗК, отраженных от нижней поверхности листа (рис. 8, б).

Зеркально-теневой метод  используют вместо или в дополнение к эхо-методу для выявления дефектов, дающих слабое отражение ультразвуковых волн в направлении раздельно-совмещенного преобразователя. Дефекты (например, вертикальные трещины), ориентированные перпендикулярно  к поверхности, по которой перемещают преобразователь (поверхности ввода), дают очень слабый рассеянный сигнал и плохо выявляются эхо-методом. В то же время они ослабляют  донный сигнал благодаря тому, что  на их поверхности продольная волна  трансформируется в головную, которая, в свою очередь, излучает боковые  волны, уносящие энергию.

Пример применения зеркально-теневого метода - контроль рельсов на вертикальные трещины в шейке. По чувствительности этот метод обычно в 10 ... 100 раз хуже эхо-метода.

Зеркально-теневой метод, как видно из схемы, не требует  двустороннего доступа к соединению. Этот метод широко используют для  контроля железнодорожных рельсов. Он позволяет также более достоверно определять наличие корневых дефектов в стыковых швах.

Оба теневых метода используют обычно для соединений с грубообработанной  поверхностью. Например, их успешно  применяют для контроля стыков арматуры периодического профиля.

2.4 Средства контроля  многослойных конструкций.

Реверберационный, импедансный, велосиметрический, акустико-топографический  методы и локальный метод свободных  колебаний используют в основном для контроля многослойных конструкций. Реверберационным методом обнаруживают в основном нарушения соединений металлических слоев (обшивок) с  металлическими или неметаллическими силовыми элементами или наполнителями.

Импедансным методом выявляют дефекты соединений в многослойных конструкциях из композиционных полимерных материалов и металлов, применяемых  в различных сочетаниях. Велосиметрическим  методом и локальным методом  свободных колебаний контролируют в основном изделия из полимерных композиционных материалов. Акустико-топографический  метод применяют для обнаружения  дефектов преимущественно в металлических  многослойных конструкциях (сотовые  панели, биметаллы и т.п.).

Реверберационный метод (рис. 9) использует влияние дефекта на время затухания многократно  отраженных ультразвуковых импульсов  в контролируемом объекте. Например, при контроле клееной конструкции  с наружным металлическим слоем  и внутренним полимерным слоем дефект соединения препятствует передаче энергии  во внутренний слой, что увеличивает  время затухания многократных эхо-сигналов во внешнем слое. Отражения импульсов  в полимерном слое обычно отсутствуют  вследствие большого затухания ультразвука  в полимере.

Импедансный метод используют зависимость импедансов изделий  при их упругих колебаниях от параметров этих изделий и наличия в них  дефектов. В импедансных методах  используют изгибные и продольные волны.

При использовании изгибных волн преобразователь стержневого  типа (рис. 10) содержит соединенный с  генератором 1 излучающий 2 и приемный 4 пьезоэлементы. Через сухой точечный контакт преобразователь возбуждает в изделии 3 гармонические изгибные колебания. В зоне дефекта соединения модуль механического импеданса  уменьшается и меняется его аргумент φ. Эти изменения регистрируются электронной аппаратурой. В импульсном варианте этого метода в системе  преобразователь - изделие возбуждают импульсы свободно-затухающих колебаний. Признаком дефекта служит уменьшение амплитуды и несущей частоты  этих колебаний.

Информация о работе Методы неразрушающего контроля