Антигены

Автор работы: Пользователь скрыл имя, 10 Ноября 2013 в 11:21, реферат

Описание работы

Антигенами называют биополимеры или их синтетические аналоги, способные при введении в организм или в культуре лимфоидных клеток вызвать иммунный ответ: продукцию антител, появление клеток-эффекторов тимического происхождения, формирование иммунологической памяти. Антитела или клетки, появляющиеся в ходе иммунного ответа, специфически взаимодействуют с антигеном или химическими веществами сходного строения.

Файлы: 1 файл

Антигены.docx

— 485.82 Кб (Скачать файл)

Антигенами называют биополимеры  или их синтетические аналоги, способные при введении в организм или в культуре лимфоидных клеток вызвать иммунный ответ: продукцию антител, появление клеток-эффекторов тимического происхождения, формирование иммунологической памяти. Антитела или клетки, появляющиеся в ходе иммунного ответа, специфически взаимодействуют с антигеном или химическими веществами сходного строения. Последние могут не обладать свойством вызывать иммунный ответ. Такие вещества называют гаптенами. При определенных условиях антигены способны вызвать состояние специфической безответственности — иммунологической толерантности.

Антигенами являются, как  правило, чужеродные для реципиента вещества, к которым принадлежат  белки, полисахариды, нуклеиновые кислоты  и их комплексы. Изменяя путем  химической модификации природные  биополимеры, можно получить так  называемые конъюгиро-ванные антигены. Конъюгированные антигены могут быть получены на основе белков, принадлежащих самому реципиенту. Аутологичные белки, денатурированные физическими или химическими методами, также приобретают антигенные свойства.

Синтетические полипептиды  как аналоги белковых антигенов  способны индуцировать иммунный ответ, но при этом совсем не обязательно  они должны быть подобны по первичной  и пространственной структуре какому-то определенному белку. Существенным для появления у них антигенных свойств является формирование устойчивой пространственной структуры. По этой причине  гомополимеры, т. е. полимеры, образованные только из одной аминокислоты, антигенными свойствами не обладают. Эти свойства появляются у полипептидов, в образовании которых участвуют две аминокислоты и более различного строения.

В классической иммунологии словом антиген обозначают в том числе целые клетки бактериального или животного происхождения. С химической точки зрения это неверно, так как клетка состоит из большого числа белков, нуклеиновых кислот, полисахаридов. Каждый из этих полимеров, полученный в очищенном виде, может быть использован для индукции иммунного ответа, специфичного в отношении этого полимера. Рассматривая очищенный биополимер как индивидуальный антиген, любое сочетание последних в какой-либо надмолекулярной структуре, например клеточной мембране, следует характеризовать как семейство индивидуальных антигенов. Этот термин может быть использован и для обозначения спонтанно агрегирующего индивидуального антигена. Так флагеллин — сократительный белок из жгутиков грамотрицательных бактерий рода Salmonella может находиться в мономерной форме и в полимеризо-ванном виде. В обоих случаях этот индивидуальный антиген способен индуцировать образование антител, хотя условия для этого различны: мономер флагеллина является тимусзависимым. а полимер — тимуснезависимым антигеном.

Несомненно существует связь между молекулярной массой биополимера и его антигенной активностью, но такую связь можно установить, только сравнивая вещества одного класса, например, различные белки с однотипной 'вторичной и третичной структурами: глобулярные или фибриллярные. При соблюдении этих условий удается установить прямую зависимость между молекулярной массой и способностью биополимера индуцировать образование антител. Эта закономерность не абсолютна •и зависит от ряда других свойств антигена, как биологических, так и химических.

Выраженность антигенных свойств белков как наиболее обширного  и значимого класса антигенов  зависит от того, насколько удалены в эволюционном отношении донор, от которого получен белок, и реципиент, которому этот белок вводят в качестве антигена. Сравнительный анализ будет корректен лишь в том случае, когда для сравнения используют однотипные белки. Так, если иммунизировать мышей альбумином из сыворотки человека и крысы, то на альбумин человека будет более выраженный ответ, чем на альбумин крысы.

В том случае когда биополимер обладает высокой чувствительностью к расщеплению, его антигенные свойства выражены в меньшей степени, чем у более устойчивого к ферментативному гидролизу вещества. Так, при использовании в качестве антигенов синтетических полипептидов или конъюгатов белков с олигопептидами более выраженный ответ получают на полипептид, в состав которого входят неприродные D-аминокислоты.

Иммунный ответ в решающей степени зависит от генотипа реципиента. Эта проблема будет рассмотрена  ниже.

Участки молекулы биополимера, его синтетического аналога или  конъюгированного антигена, распознаваемые антигенсвязывающими рецепторами  В-лимфоцитов и антителами, обозначают как детерминантные группы. В молекуле антигена, как правило, содержится несколько  различных по строению детерминантных групп, каждая из которых может повторяться  по нескольку раз. Если в молекуле какого-либо вещества существует только одна детерминантная группа определенного  строения, образования антител против этой детерминанты не произойдет. По мере увеличения в молекуле антигена числа  идентичных детерминантных групп иммунный ответ на эту детерминанту растет, но до определенного предела, вслед за чем снижается и может вовсе не наблюдаться. Это явление было изучено при использовании конъюгированных антигенов с различным числом заместителей, выполняющих функцию детерминантной группы. Исчезновение иммунного ответа на антигены с очень высокой эпитопной плотностью связано с механизмом активации В-лимфоцитов.

 

1. Конъюгированные антигены

Исследование этого класса антигенов сыграло важную роль для  понимания организации детерминантных групп природных антигенов, реальной оценки информационной «емкости» иммунной системы в филогенезе и онтогенезе.

Ниже приведен пример синтеза  конъюгированного антигена на основе реакции азосочетания диазобензолсульфоновой кислоты с остатками тирозина в молекуле белка, например, бычьего сывороточного альбумина:

При иммунизации кроликов таким конъюгатом образуется несколько видов антител, реагирующих как с белком, так и с остатком сульфаниловой кислоты. Наличие антител к сульфанилату можно установить, синтезировав тест-антиген и аналог детерминантной группы — гаптен.

Тест-антиген получают, конъюгировав с диазобензол-сульфоновой кислотой другой тирозинсодержащий белок; последний не должен иметь сходства антигенной структуры с белком — носителем детерминантной группы, использованным для иммунизации. В избранном нами случае таким белком может быть яичный альбумин. Если при добавлении тест-антигена к исследуемой антисыворотке образуется преципитат, существование антител против сульфаниловой кислоты можно считать доказанным.

Для точной оценки структуры  детерминантной группы синтезируют  гаптены. В рассматриваемом примере гаптеном послужит конъюгат тирозина с сульфаниловой кислотой. Такой гаптен не преципитирует антител, но, соединяясь с ними, блокирует активные центры. В результате антитела утратят способность взаимодействовать с тест-антигеном. Реакция ингибирования — эффективный метод тестирования антител против простых по химическому строению гаптенов.

Реакцию низкомолекулярного гаптена с антителами можно оценить с помощью прямых реакций, среди которых наибольшее применение получил метод равновесного диализа. Полученные в эксперименте данные позволяют рассчитать константу равновесия в системе гаптен-антитело. Если определять величины константы равнозесия при реакции антител к определенному конъюгированному антигену с рядом сходных по строению гаптенов, можно оценить вклад каждого радикала в структуру детерминантной группы. При этом удобно сопоставлять сродство к антителу какого-то аналога детерминантной группы со сродством наиболее близкого к ней по строению гаптена. Таким способом получают относительную величину константы связывания: ДотН= = Kx/Kv.T, где Кх — константа связывания исследуемого аналога, Ср.г — константа связывания референс-гаптена.

Ниже приведены величины /Сотн для ряда нитрофе-нильных производных, реагирующих с антителами кролика против динитрофенилированного гемоцианина, т. е. степень сродства антидинитрофенильных антител кролика к различным гаптенам. Антиген получали, модифицируя белок по е-аминогруппам лизина динитрофенилсульфоно-вой кислотой. Поскольку е-динитрофениллизин наиболее близок по строению детерминантной группе использованного конъюгированного антигена, его использовали в качестве референс-гаптена.

Из анализа приведенных  ниже данных следует, что антитела распознают как ДНФ-группу, так и аминокислотный остаток, к которому эта группа присоединена. При замене лизина на любую другую аминокислоту сродство антител к  гаптеиу резко снижается. Даже в случае использования в качестве гаптена е-динитрофениллизина, в котором взят неприродный оптический изомер, отчетливо заметно снижение константы связывания. Особенно низкая константа связывания найдена в случае отсутствия в молекуле гаптена аминокислотного остатка (динитрофенол). Практически не связываются с изучаемыми антителами мононитрофенильные производные аминокислот. Данные были получены и для других антител к конъюгированным антигенам.

Необходимость стерического соответствия антигенной детерминанты и активного центра — антидетерминанты — антитела со всей очевидностью вытекает, в частности, из того факта, что антитела, направленные к орто-, мета- и пара-аминобензойным кислотам, практически не реагируют перекрестно. Антитела также отчетливо различают право- и левовращающие изомеры виннокаменной кислоты. Менее очевидным является факт строгой специфичности распознавания антителами р-аминобензойной и р-аминофенилсульфоновой кислот:

Оба ароматических соединения имеют в параположении отрицательно заряженный заместитель. Заместители  отличаются степенью своей нуклеофильности, которая у сульфогруппы ощутимо выше, чем у карбоксильной группы, что приводит к более выраженному смещению облака я-электронов ароматического кольца в направлении заместителя, представленного сульфогруппой в сравнении с карбоксильной группой. Это обстоятельство и различия в размере замещающей группы достаточны, очевидно, для того, чтобы каждое соединение реагировало только с направленным к нему антителом.

Вопрос о размере детерминантной группы конъюги-рованного антигена, вкладе в ее специфичность различных радикалов был изящно проанализирован П. Шехтером. В качестве антигена использовали конъюгаты белка с олиго-О-аланином. Реакцию между антителами к поли-О-аланину и тест-антигеном ингибировали с помощью различных по размеру олигопептидов из D- и L-аланнна. Как оказалось, ингибирующий эффект гаптенов нарастал от ди- к тетра-О-аланнну. Дальнейшее увеличение длины пептида не усиливало его ннгибирующих свойств. Тетра-Ь-аланин был совершенно не активен как ингибитор. Эти данные означают, во-первых, что антитела четко различают олигопептиды из право- и левовращающих аминокислот, не имеющие регулярной вторичной структуры. Во-вторых, очевидно, что активный центр антитела соответствует по размеру тетрапептиду.

Дальнейшие опыты показали, что вклад каждого остатка  аланина в связывание тетрапептида антителом далеко не одинаков. Были синтезированы аналоги гаптена, в которых один из остатков аланина заменяли на глицин. В случае замены N-концевого аланина на глицин константа связывания такого гаптена по сравнению с тетрааланином уменьшалась в 100 раз. Напротив, замена С-концевого аналина на глицин почти не сказывалась на величине константы связывания. Поскольку пептиды присоединяли к белку-носителю через С-концевую группу, можно заключить, что решающий вклад в связывание гаптена антителом вносит наиболее удаленный от молекулы белка-носителя участок присоединенного к ней пептида: в рассматриваемом случае метильная группа N-концевого аланина. Такая группа в молекуле гаптена получила название иммунодоминантной.

Таблица 1. Исследование специфичности  антител к поли-Ь-алани-ну с помощью тетрапептидов различного строения

Конъюгированные антигены оказались  весьма полезными для изучения многих ключевых проблем клеточной иммунологии, вопросов регуляции иммунного ответа.

2. Белки и синтетические  полипептиды

Изучение антигенной структуры  белков осуществляют с помощью нескольких методов: 1) исследованием продуктов  ограниченного протеолиза, 2) химической модификацией различных боковых аминокислотных остатков с последующим анализом антигенного строения образующегося продукта, 3) разрушением присущей данному белку вторичной и третичной структуры. Каждый из перечисленных методов имеет свои ограничения, в силу чего достаточно полная информация о строении детерминантных групп белков может быть получена лищь при сочетании ряда методов.

При расщеплении мономера флагеллина по остаткам метионина с помощью бромциана образуются 4 фрагмента, размер которых

приведен на рис. Фрагмент А, составляющий менее половины молекулы, имеет в своем составе все антигенные детерминанты этого белка, так как полностью ингибирует реакцию антител против нативного флагеллина с нерасщепленным флагеллином. Существенно, что указанный фрагмент в отличие от остальной части молекулы содержит относительно резистентные к действию пепсина и трипсина участки полипептидной цепи. Это согласуется с заключением, согласно которому резистентность к ферментативному гидролизу служит фактором, благоприятствующим проявлению антигенных свойств биополимера.

Фрагменты, образующиеся при  расщеплении флагеллина бромцианом

У глобулярных белков с  большим содержанием а-спиральных участков антигенные детерминанты располагаются в местах изгиба скрученной в спираль цепи. Так, в миоглобине кашалота детерминанты располагаются между остатками 15—29, 56—69, 70—76, 77—89, а также в С-концевой части молекулы. Эти данные были получены при анализе продуктов гидролиза миоглобина трипсином и химотрипсином.

Информация о работе Антигены