Поглотительная способность почв почвенный поглощающий комплекс

Автор работы: Пользователь скрыл имя, 13 Октября 2013 в 17:46, реферат

Описание работы

Учение о поглотительной способности почв разработано в трудах К. К. Гедройца, Г. Вигнера, С. Маттсона, Е. Н. Гапона, Б. П. Никольского, Н. П. Ремезова, И. Н. Антипова-Каратаева, Н. И. Горбунова. Наиболее полно характеристика поглотительной способности почв изложена в работах К. К. Гедройца, который
выделил пять ее видов.

Содержание работы

ВВЕДЕНИЕ 3
1. ПОГЛОТИТЕЛЬНАЯ СПОСОБНОСТЬ ПОЧВЫ 3
1.1. КАЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ВИДОВ ПОГЛОТИТЕЛЬНОЙ СПОСОБНОСТИ ПОЧВЫ 7
1.2. ОПРЕДЕЛЕНИЕ СУММЫ ПОГЛОЩЕННЫХ ОСНОВАНИЙ ПО МЕТОДУ КАППЕНА-ГИЛЬКОВИЦА 9
2. ПОЧВЕННЫЙ ПОГЛОЩАЮЩИЙ КОМПЛЕКС (ППК) 11
2.1. ПОЧВЕННЫЕ КОЛЛОИДЫ 11
2.2. СТРОЕНИЕ И ЗАРЯД ПОЧВЕННЫХ КОЛЛОИДОВ 13
2.3. СОРБЦИОННЫЕ ПРОЦЕССЫ В ПОЧВАХ 17
2.4. СОРБЦИЯ АНИОНОВ ПОЧВАМИ 22
2.5. ФИЗИЧЕСКОЕ СОСТОЯНИЕ ПОЧВЕННЫХ КОЛЛОИДОВ 24
3. ЭКОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ ПОГЛОТИТЕЛЬНОЙ СПОСОБНОСТИ 28
ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ 29

Файлы: 1 файл

Реферат поглотительная способность почв почвенный поглощающий ко.doc

— 363.00 Кб (Скачать файл)

Общее количество всех поглощенных (обменных) катионов, которые могут быть вытеснены из почвы, называется емкостью поглощения или емкостью катионного обмена (ЕКО) (понятие введено К. К. Гедройцем) и выражается в миллиграмм-эквивалентах на 100 г почвы.

 

 

 

ЕКО зависит от содержания в почве коллоидной и предколлоидной фракций, строения их поверхностей, природы почвенного поглощающего комплекса, реакции среды (табл. 34 и 35) При увеличении степени дисперсности входящих в состав поглощающего комплекса коллоидных и предколлоидных частиц емкость поглощения катионов возрастает. Органическая часть почвенного поглощающего комплекса обладает значительно большей емкостью поглощения, чем минеральная. Высокая емкость поглощения минералов монтмориллонитовой группы обусловлена расширением при увлажнении межплоскостных пространств и обменом расположенных в межплоскостных пространствах катионов на катионы взаимодействующих растворов (табл.34). С ростом рН возрастает ионизация функциональных групп гумусовых кислот, глинистых минералов, уменьшается положительный заряд полуторных оксидов и возрастает ЕКО (рис. 38). Соответственно определение ЕКО почв должно проводиться при определенном стандартном рН.

 

2.4. СОРБЦИЯ АНИОНОВ ПОЧВАМИ

 

Сорбция анионов зависит  от заряда, строения и химических свойств почвенного поглощающего комплекса. По способности сорбироваться на почвенных частицах анионы располагаются в следующий ряд:

По мере увеличения в  почвенном поглощающем комплексе содержания алюминия и железа и наличия сколов почвенных минералов, а также при понижении рН среды сорбция анионов возрастает. Так как анионы менее гидратированы, чем катионы, они характеризуются высокой селективностью поглощения.

Анионы  и практически не поглощаются почвой. Известна отрицательная сорбция и которая впервые была описана К. К. Гедройцем как отрицательное поглощение веществ. Отрицательная сорбция этих анионов обусловлена снижением их концентрации во внутренней части сорбционной пленки, за счет чего концентрация анионов в более рыхло связанных, а следовательно, и в более подвижных слоях водной пленки возрастает. Отрицательная адсорбция нитратов усиливает процессы вымывания их из почвы, что приводит к обеднению почв соединениями азота. Отрицательная адсорбция хлоридов благоприятствует быстрой промывке почв при хлоридном засолении.

В поглощении анионов  большую роль играют процессы солеобразования. При взаимодействии растворимых солей образуются новые, нерастворимые в воде соли (сульфаты, карбонаты, фосфаты), переходящие в твердую фазу почвы. Таким путем интенсивно поглощаются почвой ионы Н2РО 4, НРО2 4, РО34. Однако механизм поглощения фосфат-ионов почвами сложен и разнообразен Можно выделить следующие виды поглощения почвой фосфат-ионов:

1) образование малорастворимых фосфатов в результате взаимодействия внесенных в почву растворимых фосфатов с солями почвенного раствора   (химическое поглощение). Такой вид поглощения   возможен   во   многих   почвах   при   наличии   ионов кальция,   алюминия,   железа   при   нейтральной   или   щелочной реакции среды;

2)    образование   слаборастворимых   фосфатов   с   катионами поглощающего комплекса после вытеснения их катионами раствора;

3)   поглощение фосфат-ионов  при взаимодействии их с минералами-солями;   гипсом,   кальцитом,  доломитом.  Часть фосфат-иона связывается с кальцием, перешедшим в раствор   Возможно поглощение фосфат-иона на поверхности минералов без вытеснения  кальция,  частичное  окклюдирование  фосфата  в  минерале;

4)   хемосорбция  фосфат-ионов гидроксидами алюминия  и железа. Связь осуществляется с твердой фазой на внешней поверхности коллоида. Одна из схем реакции:

При этом поглощение фосфат-ионов  сильно зависит от дисперсности. Свежеосажденные оксиды поглощают фосфаты в большом количестве (Р2О5 составляет 10—15% от массы поглотителя). При кристаллизации полуторных оксидов (уменьшении внешней поверхности)  поглощение фосфатов уменьшается в  10 раз,

5)    поглощение   фосфат-ионов   глинистыми   и   неглинистыми алюмо-  и ферросиликатными минералами.  На внешней,  иногда на    внутренней поверхности  минералов  происходит необменное поглощение  фосфат-иона.   При  этом  фосфат-ион  адсорбируется в  потенциалопределяюще.м слое отрицательных  коллоидов,  притягиваясь к Аl кристаллической решетки;

6)    возможна   обменная  сорбция   анионов   на   положительно заряженных участках коллоидной  мицеллы:

7)   аморфный  кремнезем   поглощает фосфаты  путем   механического захвата — окклюдирования.

Органические вещества, насыщенные основаниями, также поглощают  фосфаты, но значительно меньше, чем  полуторные оксиды и глинистые минералы  (табл   36).

 

 

Поглощение фосфатов приводит к накоплению фосфора в почве, но снижает степень доступности его растениям. Уменьшение поглощения фосфатов может происходить за счет образования комплексных алюмо-и железогумусовых   соединений.

2.5. ФИЗИЧЕСКОЕ СОСТОЯНИЕ ПОЧВЕННЫХ КОЛЛОИДОВ

 

Коллоиды в почве  находятся главным образом в  форме гелей, в которых частицы  сцепляются между собой и образуют пространственную структурную сетку, в ячейках которой удерживается вода. Во влажной почве небольшое количество коллоидов может находиться в состоянии золя (частицы разделены водной фазой). Раздельное существование коллоидных частиц в состоянии золя связано с наличием электрокинетического потенциала и водной (гидратационной) оболочки на поверхности частиц. Одноименно заряженные частицы отталкиваются друг от друга, могут долго находиться в суспензии, не образуя осадка.

При падении электрокинетического потенциала и уменьшении заряда частиц разноименно заряженные коллоиды, сталкиваясь  друг с другом при хаотическом движении, склеиваются, увеличиваются в размерах и выпадают в осадок. Процесс соединения коллоидных частиц и образования геля из золя называется коагуляцией, дальнейшее осаждение — седиментацией. Переход коллоида из состояния геля в состояние золя называется пептизацией. Коллоиды, которые могут легко переходить из золя в гель и обратно, называются обратимыми. В почве много коллоидов, трудно переходящих в состояние золя и составляющих группу необратимых коллоидов.

Взаимодействию и соединению коллоидных частиц мешают водные пленки, которые удерживаются на их поверхности. По количеству воды, удерживаемой коллоидами, они разделяются на гидрофильные и гидрофобные. Гидрофильные коллоиды сильно гидратированы, труднее коагулируют. К ним относятся некоторые органические вещества, встречающиеся в почвах, минералы монтмориллонитовой группы. Гидрофобные коллоиды содержат небольшое количество воды. Это — гидроксид железа, минералы каолинитовой группы. Деление коллоидов на гидрофильные и гидрофобные несколько условно, поскольку при измельчении твердых  коллоидных частиц  степень гидратации   их  возрастает.

Физическое состояние  коллоидов в значительной степени  зависит от состава поглощенных катионов. Чем больше валентность поглощенных ионов, больше их заряд, тем меньше будет диссоциация их от коллоидной частицы, меньше электрокинетический  потенциал частицы, тем легче  идет процесс  коагуляции.

К К. Гедройц расположил все катионы но их коагулирующей  способности в ряд, который он назвал лиотропным:

Коллоиды, насыщенные одновалентными катионами, находятся в основном в состоянии золя; при замене одновалентных катионов двух- и трехвалентными они переходят в гель. Так, насыщение почвенного поглощающего комплекса натрием способствует   образованию   золя,   распылению   почвы,   увеличению

заряда почвенных коллоидов  и их гидратации (рис. 39). Замещение натрия кальцием способствует коагуляции и образованию водопрочной структуры.

Реакция почвы также  влияет на состояние коллоидов. Кислая реакция способствует растворению некоторых коллоидов, например гидроксида алюминия; щелочная реакция стимулирует выпадение в осадок коллоидов полуторных оксидов и переход в состояние золя органических и некоторых минеральных коллоидов.

Часть коллоидов в  почве находится в свободном состоянии, часть образует пленки на поверхности более крупных гранулометрических фракций путем адгезии, под которой понимается слипание (склеивание) поверхностей каких-либо веществ различного химического состава, соприкасающихся друг с другом.

Таким путем в почве при периодическом высушивании, приводящем к дегидратации коллоидов, происходит закрепление гумусовых кислот и их солей на поверхности коллоидных частиц, а минеральных, органических и органоминеральных коллоидов — на поверхности частиц пылеватых и песчаных гранулометрических фракций

Особым явлением представляется процесс тиксотропии коллоидов. Она имеет две особенности: 1) образующийся из золя гель не отделяется от дисперсной среды, а застудневает вместе с ней; 2) полученный гель обратим и может быть переведен в золь путем механического воздействия (встряхивания, помешивания), по прекращению которого золь снова с течением времени переходит в гель. В почвах результатом тиксотропии является возникновение особого рода коагуляционно-тиксотропной микроструктуры, которая характеризуется образованием рыхлого каркаса из коллоидных частичек в основном удлиненной формы, внутри которого находится почвенный раствор. Тиксотропия особенно развита в криогенных почвах, вызывая их плывунность. Тиксотропные почвы плохо проницаемы для воды и воздуха, в них часто развиваются восстановительные процессы.

В почве под влиянием различных факторов — периодическое  высушивание, нагревание, увлажнение, промораживание, изменение реакции среды и др. — происходит изменение вновь образующихся при выветривании и почвообразовании органических и минеральных коллоидов. Одним из таких изменений является процесс старения коллоидов, под которым понимается самопроизвольное уменьшение их свободной поверхностной энергии. Старение обычно не сопровождается изменением химического и минералогического состава коллоидов, но при этом резко изменяются их свойства: они становятся более гидрофобными, уменьшается их сорбционная способность, связь с дисперсионной средой, может произойти частичная кристаллизация гелей. Для некоторых коллоидов причиной старения является окисление кислородом воздуха, например переход оксида Fe (II) в оксид Fе (III). Свет, особенно ультрафиолетовое излучение, ускоряет старение коллоидов.

 

3. ЭКОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ ПОГЛОТИТЕЛЬНОЙ СПОСОБНОСТИ

 

Поглотительная способность  почвы — одно из ее важнейших  свойств, в значительной степени  определяющее плодородие почвы и характер процессов почвообразования. Она обеспечивает и регулирует питательный режим почвы, способствует накоплению многих элементов минерального питания растений, регулирует реакцию почвы, ее водно-физические свойства.

На свойства почвы  и условия произрастания растений большое влияние оказывает состав обменных катионов. Так, у почв, насыщенных кальцием, реакция близка к нейтральной; коллоиды находятся в состоянии необратимых гелей и не подвергаются пептизации при избытке влаги; почвы хорошо оструктурены, обладают благоприятными физическими свойствами. Черноземы являются примером таких почв. Почвы, у которых в составе обменных катионов в значительном количестве ионы натрия, имеют щелочную реакцию, отрицательно влияющую на состояние коллоидов и рост растений. Насыщенные натрием коллоиды легко пептизируются; содержащие их почвы плохо оструктурены, имеют неблагоприятные водно-физические свойства: повышенную плотность, плохую водопроницаемость, слабую водоотдачу, низкую доступность почвенной влаги (солонцы, солонцеватые почвы).

При наличии в почвенном  поглощающем комплексе в составе  обменных катионов значительного количества коллоиды легко разрушаются в результате кислотного гидролиза, почвы плохо оструктурены.

 

 

 

 

 

 

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

 

1. Агрохимия. 2-е изд., перераб. и доп./ Под ред. Смирнов П.М., Муравин Э.А. - М.: Колос, 1984. - 304с.

2. Гедройц К. К., Учение о поглотительной способности почв, 4 изд., М., 1933.; Ю. А. Поляков. Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

3. Почвоведение. Учеб. для ун-тов. В 2 ч./ Под ред. В. А. Ковды, Б. Г. Розанова. Ч. 1. Почва и почвообразование/ Г. Д. Белицина, В. Д. Васильевская, Л. А. Гришина и др. — М.: Высш. шк., 1988. — 400 с : ил.

4. Уваров Г.И., Голеусов П.В. Практикум по почвоведению с основами бонитировки почв. – Белгород: Изд-во Белгор. гос. ун-та, 2004. – 140 с.

 

INTERNET

 

5. http:// www.window.edu.ru

6. http:// www.bsu.ru/content/hecadem/kovda/kovda1.pdf

7. http:// www.dic.academic.ru

8. http:// www.agromage.com




Информация о работе Поглотительная способность почв почвенный поглощающий комплекс