Поглотительная способность почв почвенный поглощающий комплекс

Автор работы: Пользователь скрыл имя, 13 Октября 2013 в 17:46, реферат

Описание работы

Учение о поглотительной способности почв разработано в трудах К. К. Гедройца, Г. Вигнера, С. Маттсона, Е. Н. Гапона, Б. П. Никольского, Н. П. Ремезова, И. Н. Антипова-Каратаева, Н. И. Горбунова. Наиболее полно характеристика поглотительной способности почв изложена в работах К. К. Гедройца, который
выделил пять ее видов.

Содержание работы

ВВЕДЕНИЕ 3
1. ПОГЛОТИТЕЛЬНАЯ СПОСОБНОСТЬ ПОЧВЫ 3
1.1. КАЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ВИДОВ ПОГЛОТИТЕЛЬНОЙ СПОСОБНОСТИ ПОЧВЫ 7
1.2. ОПРЕДЕЛЕНИЕ СУММЫ ПОГЛОЩЕННЫХ ОСНОВАНИЙ ПО МЕТОДУ КАППЕНА-ГИЛЬКОВИЦА 9
2. ПОЧВЕННЫЙ ПОГЛОЩАЮЩИЙ КОМПЛЕКС (ППК) 11
2.1. ПОЧВЕННЫЕ КОЛЛОИДЫ 11
2.2. СТРОЕНИЕ И ЗАРЯД ПОЧВЕННЫХ КОЛЛОИДОВ 13
2.3. СОРБЦИОННЫЕ ПРОЦЕССЫ В ПОЧВАХ 17
2.4. СОРБЦИЯ АНИОНОВ ПОЧВАМИ 22
2.5. ФИЗИЧЕСКОЕ СОСТОЯНИЕ ПОЧВЕННЫХ КОЛЛОИДОВ 24
3. ЭКОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ ПОГЛОТИТЕЛЬНОЙ СПОСОБНОСТИ 28
ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ 29

Файлы: 1 файл

Реферат поглотительная способность почв почвенный поглощающий ко.doc

— 363.00 Кб (Скачать файл)

4. Затем содержимое колбы взбалтывают и фильтруют через воронку с бумаж-

ным фильтром. Определение  суммы поглощенных оснований  возможно и в отстое. В этом случае отстой аккуратно сливают, не взмучивая почву. Для определения пипеткой берут 25 см3 фильтрата или отстоя в коническую колбу на 100 см3.

5. В раствор добавляют  2-3 капли фенолфталеина и титруют  0,1 н. раствором гидроксида натрия при помощи бюретки на 25 или 50 см3 появления ярко-розовой окраски, не исчезающей в течение 1 мин. В случае выпадения осадка полуторных оксидов окраску следует наблюдать в прозрачном слое над осадком. Аналогично проводят титрование 25 см3 раствора соляной кислоты (контроль).

6. Результаты вычисляют  по формуле:

(V − V ) ⋅ c ⋅ 100 ⋅ К Г

S= 0,

Где S - сумма поглощенных оснований в ммоль на 100 г почвы, V0 – объем раствора гидроксида натрия, израсходованный на титрование соляной кислоты в контрольной колбе, см3; V – объем раствора гидроксида натрия, израсходованный на титрование испытуемого раствора, см3; с – концентрация раствора гидроксида натрия, ммоль/дм3; 100 – коэффициент пересчета на 100 г почвы; КГ – коэффициент гигроскопичности почвы; m – масса навески почвы, соответствующая взятому для титрования объему вытяжки, г.

Оборудование: фарфоровая ступка с пестиком, сито с отверстиями 1 мм, технические весы, конические колбы емкостью 100 см3, стеклянная воронка, бюретки на 25 или 50 см3, железный штатив с зажимами, фильтровальная бумага, капельница для фенолфталеина.

Реактивы: 0,1 н. раствор соляной кислоты, фенолфталеин, 0,1 н. раствор гидроксида натрия.

Приготовление растворов:

1) Приготовление 0,1 н.  раствора соляной кислоты. Раствор  указанной концентрации приготовляют  из 8,2 см3 соляной кислоты с удельным  весом 1,19, которую разбавляют  до 1 л дистиллированной водой.

2) Приготовление 0,1 н. раствора гидроксида натрия. Указанный раствор гидроксида натрия готовят из 4 г кристаллического гидроксида натрия, который растворяют в дистиллированной воде, освобожденной от углекислого газа кипячением, и в мерной посуде объем доводят до 1 л.

3) Приготовление раствора фенолфталеина. Навеску в 0,1 г фенолфталеина растворяют в 100 см3 96-98-процентного этилового спирта.

http://window.edu.ru/window/library/pdf2txt?p_id=32810&p_page=5

 

2. ПОЧВЕННЫЙ ПОГЛОЩАЮЩИЙ КОМПЛЕКС (ППК)

2.1. ПОЧВЕННЫЕ КОЛЛОИДЫ

 

Обменная поглотительная способность почв обусловлена наличием в ней почвенного поглощающего комплекса. Почвенный поглощающий комплекс (ППК) — это совокупность минеральных, органических и органоминеральных соединений высокой степени дисперсности, нерастворимых в воде и способных поглощать и обменивать поглощенные ионы.

Почва относится к  гетерогенным полидисперсным образованиям, для которых коллоидное состояние вещества имеет большое значение. Поглотительной способностью обладают как коллоидные частицы (0,2—0,001 мкм), так и предколлоидная фракция (0,2—1 мкм). Диаметр частиц в 1 мкм представляет собой грань, отделяющую механические элементы с резко выраженной поглотительной способностью. Почвенные коллоиды образуются в процессе выветривания и почвообразования в результате дробления крупных частиц или путем соединения молекулярно раздробленных веществ и, вообще говоря, подчиняются законам, установленным для таких систем в физической и коллоидной химии. В почве хорошо развита поверхность раздела между твердой (дисперсная фаза), жидкой и газообразной (дисперсионная среда) фазами. Между ними постоянно происходят процессы взаимодействия, устанавливается динамическое равновесие. Характерной особенностью почвенных коллоидов является наличие большой суммарной и удельной (поверхность почвенных частиц в м2 или см в единице массы или объема почвы) поверхности. Представление о поверхности коллоидов можно получить при подсчете площади всех сторон кубиков, образованных при дроблении 1 см3 твердого тела (табл. 31).

Как видно из таблицы, при делении 1 см3 вещества таким образом, что каждое ребро нового кубика равно 0,0000001 см, общая поверхность всех кубиков составляет 60 000 000 см2, или 0,6 га.

 

Удельная поверхность  является одним из параметров, определяющих химическую активность почв, так как с увеличением дисперсности частиц их химическая активность возрастает. Удельная поверхность (в м2/г) коллоидов гумусового горизонта различных суглинистых почв составляет:

дерново-подзолистые - 29

серые лесные - 33

черноземы - 48

Особенности поглотительной способности различных почв в значительной степени обусловлены составом почвенного поглощающего комплекса, составом и строением почвенных коллоидов (табл. 32). Почвенно-поглощающий комплекс играет существенную роль в почвообразовательных процессах, в эволюции и генезисе почв. Многие свойства почвы, которые определяют уровень почвенного плодородия (сложение, физико-химические свойства, водный, воздушный, микробиологический и питательный режимы), в значительной мере зависят от природы и состава ППК. Поэтому исследования ППК имеют важное значение для разработки наиболее эффективных приёмов улучшения земель.

 

2.2. СТРОЕНИЕ И ЗАРЯД ПОЧВЕННЫХ КОЛЛОИДОВ

 

В почвах всегда присутствуют минеральные, органические и органоминеральные коллоиды, состав и количественное соотношение которых зависит от характера почвообразующих пород и типа почвообразования. Основу коллоидной частицы, называемой, по предложению Г. Вигнера, коллоидной мицеллой, составляет ее ядро, природой которого во многом определяется поведение почвенных коллоидов. Ядро коллоидной мицеллы представляет собой сложное соединение аморфного или кристаллического строения различного химического состава (табл. 32). Обобщенная схема строения коллоидной мицеллы, которой для наглядности придана шарообразная форма, представлена на рис. 35. На поверхности ядра расположен прочно удерживаемый слой ионов, несущий заряд, — слой потенциалопределяющих ионов. Ядро мицеллы вместе со слоем потенциалопределяющих ионов называется гранулой. Между гранулой и раствором, окружающим коллоид, возникает термодинамический потенциал (рис 36), под влиянием которого из раствора притягиваются ионы противоположного знака (компенсирующие ионы). Так, вокруг ядра коллоидной мицеллы образуется двойной электрический слой, состоящий из слоя потенциалопределяющих и слоя компенсирующих ионов Компенсирующие ионы, в свою очередь, располагаются вокруг гранулы двумя слоями Один — неподвижный слой, прочно удерживаемый электростатическими силами потенциалопределяющих ионов (слой Гельмгольца). Гранула вместе с неподвижным слоем компенсирующих ионов называется коллоидной частицей. Между коллоидной частицей и окружающим раствором возникает электрокинетический потенциал (дзета-потенциал), под влиянием которого находится второй (диффузный) слой компенсирующих ионов, обладающих способностью к эквивалентному обмену на ионы того же знака заряда из окружающего раствора. Распределение обменных катионов в почвенном растворе в пределах диффузного слоя около поверхности твердой фазы ППК определяется, согласно теории Гуна и Чэпмена, двумя противоположно направленными силами.

Электростатические силы отрицательно заряженной поверхности твердой фазы притягивают катионы и отталкивают анионы, создавая градиент концентрации катионов в пределах диффузного слоя с максимумом близ поверхности. Однако этому препятствует тепловое движение ионов, стремящееся выровнять их концентрацию во всем объеме раствора. Устанавливающееся под влиянием этих противоположно направленных силовых полей равновесие характеризуется состоянием, при котором избыток катионов, находящихся около поверхности твердой фазы, по мере увеличения расстояния от границы раздела фаз по направлению внутрь почвенного раствора в пределах диффузного слоя уменьшается по закону, выражаемому уравнением Больцмана:

(34)

где С — концентрация катиона на расстоянии z от поверхности твердой фазы, C — концентрация того же катиона на бесконечно большом расстоянии от заряженной поверхности, т е в свободном растворе; F — заряд катиона; R — газовая постоянная;

Т — абсолютная температура; φ — потенциал на уровне z, определяемый из формулы:

(35)

где п — заряд на поверхности твердой фазы; D — диэлектрическая постоянная внутри двойного слоя зарядов на границе между твердой и жидкой фазами.

Коллоидная мицелла  электронейтральна. Основная масса ее принадлежит грануле, поэтому заряд последней рассматривается как заряд всего коллоида. Возникновение заряда у различных коллоидов связано с особенностями их химического состава и структуры. Отрицательный заряд приобретают коллоиды за счет разрыва связей и облома пакетов глинистых минералов, различных форм почвенных кальцитов, несиликатных соединений железа и алюминия (их оксидов и гидроксидов) и освобождения валентностей краевых ионов кислорода, при изоморфном замещении в кремнекислородных тетраэдрах минералов группы монтмориллонита четырехвалентного кремния трехвалентным алюминием, алюминия — двухвалентными катионами — железом, магнием. Заряды у коллоидов органической природы (например, гуминовая кислота) возникают за счет диссоциации водородных ионов карбоксильных (СООН) и фенолгидроксильных (ОН) групп. Наибольшей способностью к диссоциации обладает водород карбоксильной группы. В коллоидной кремнекислоте электрический потенциал создается благодаря диссоциации ионов водорода. Коллоиды, имеющие в потенциалопределяющем слое отрицательно заряженные ионы и диссоциирующие в раствор Н-ионы, называются ацидоидами (кислотоподобными). Ясно выраженными кислотными свойствами в условиях преобладающих в почве значений рН обладают кремнекислота и гуминовая кислота. Коллоиды, имеющие в потенциалопределяющем слое положительно заряженные ионы и посылающие в раствор ионы ОН, называют базоидами. Коллоиды гидроксидов железа, алюминия, протеины в зависимости от реакции среды ведут себя то как кислоты (ацидоиды), то как основания (базоиды). Коллоиды с такой двойственной функцией называются амфотерными коллоидами, или амфолитоидами. Так, в условиях кислой реакции среды высокая концентрация в растворе водородных ионов подавляет диссоциацию гидроксида алюминия как кислоты и делает возможным диссоциацию его по основному типу с посылкой в раствор ОН-ионов:

При щелочной реакции  гидроксид алюминия ведет себя как кислота и коллоид приобретает отрицательный знак заряда:

С подкислением реакции  среды усиливается базоидная  диссоциация амфотерных коллоидов, с подщелачиванием — ацидоидная. При некотором значении рН, которое называется изоэлектрической точкой или изоэлектрическим рН, коллоид посылает в окружающий раствор одинаковое количество катионов и анионов и становится электронейтральным. Изоэлектрический рН характеризует степень выраженности ацидоидно-базоидных свойств. Амфотерные соединения обладают двумя видами констант диссоциации — кислотной и основной. Эти константы малы, обычно ниже констант диссоциации воды, т. е. амфотерные соединения являются очень слабыми кислотами и основаниями.

 

2.3. СОРБЦИОННЫЕ ПРОЦЕССЫ В ПОЧВАХ

 

Основным механизмом физико-химической, или обменной, поглотительной способности почв является процесс сорбции.

Неспецифическая, или обменная, сорбция катионов — способность катионов диффузного слоя почвенных коллоидов обмениваться на эквивалентное количество катионов соприкасающегося с ним раствора. Обменные катионы составляют небольшую часть от их общего содержания в почве. В обменном состоянии в почвах обычно находятся

 В незначительных  количествах могут встречаться и иные катионы

Основными закономерностями обменной сорбции катионов являются:

1) эквивалентность обмена  между поглощенными катионами почвы и катионами взаимодействующего раствора. Термодинамическая константа полностью обратимого (равновесного) обмена двух одинаково заряженных катионов А и В должна быть равна 1:

(36)

где — активности катионов в поглощенном состоянии и в равновесном окружающем растворе;

2) в ряду разновалентных  ионов энергия поглощения возрастает с увеличением валентности иона:

 

Под энергией поглощения понимается относительное количество поглощения катионов почвами при одинаковой их концентрации в растворе;

3) энергия поглощения  определяется радиусом негидратиро ванного иона: чем меньше радиус, тем слабее связывается ион.

Это объясняется большей  плотностью заряда, а следовательно, и большей гидратированностью иона (табл. 33). Гидратационные оболочки изменяю свойства ионов: уменьшают их чувствительность к электростатическому притяжению, изменяют соотношение между размерами ионов;

4) внутри рядов ионов  одной валентности энергия поглощения возрастает с увеличением атомной массы, атомного номера. В соответствии с указанными общими закономерностями имеются следующие ряды поглощения ионов: одновалентные: двухвалентные: трехвалентные: Ион или (оксоний) сорбируется аномально прочно, что обусловлено его малым размером и способностью давать со многими анионами слабодиссоциированные соединения.

Постоянного положения  в ряду поглощения Н не имеет, так  как его поглощение во многом зависит от состава твердой фазы (сорбента). Процесс обмена иона электролита с ионом сорбента проходит через пять последовательных стадий (Р. Гельферих, 1968): 1) перемещение вытесняющего иона из раствора к поверхности твердой фазы 2) перемещение вытесняющего иона внутри твердой фазы к точке обмена; 3) химическая реакция двойного обмена; 4) перемещение вытесняемого иона внутри твердой фазы от точки обмена к поверхности; 5) перемещение вытесняемого иона от поверхности в раствор.

Скорость катионного обмена в почвах определяется главным  образом внутридиффузионными процессами. Катионы, обладающие большей энергией поглощения, прочнее удерживаются в поглощенном состоянии и труднее замещаются. 75—85% поглощенных катионов десорбируется за первые 3—5 мин, затем обмен резко замедляется и продолжается до двух-трех суток. Это связано с неоднородностью состава почвенного поглощающего комплекса, с наличием энергетически неравноценных центров, со строением поверхности коллоидных частиц, изменением состава почвенного поглощающего комплекса, с наличием энергетически неравноценных центров, со строением поверхности коллоидных частиц, изменением состава почвенного поглощающего комплекса в процессе поглощения катионов, его агрегатного состояния. По П. Н. Гапону, почва представляет собой сорбент с 5 группами активных мест:

Так как 3, 4 и 5-я группы проявляют активность при рН>7, большинство почв в широком интервале концентраций десорбируемых ионов ведут себя как адсорбенты с двумя группами активных мест. Излом прямой линии изотермы ионообменной сорбции (рис. 37) обусловлен тем, что одна группа катионов связана с органической частью поглощающего комплекса, в которой при рН 6,5—7,5 отсутствуют разнородные активные центры, другая — с минеральной частью. Минеральная часть почвы может иметь несколько энергетически неравноценных центров. 70—80% обменных катионов глинистых минералов связаны с поверхностью базальных граней кристаллов и легче обмениваются, чем катионы, удерживаемые активными центрами сколов кристаллов. Для характеристики количественных закономерностей ионообменной сорбции предложено значительное число эмпирических и теоретически выведенных уравнений, отражающих функциональную зависимость поглощения катионов от их равновесной концентрации в растворе. Большинство из этих уравнений может быть приведено к виду уравнения закона действующих масс. В одних случаях было установлено строгое подчинение ионообменных реакций этому закону, в других — коэффициенты ионного обмена являлись величинами переменными Наилучшее совпадение с экспериментальными данными обнаружено при использовании логарифмической изотермы сорбции.

Информация о работе Поглотительная способность почв почвенный поглощающий комплекс