Лекции по фотограметрии

Автор работы: Пользователь скрыл имя, 14 Января 2013 в 00:52, лекция

Описание работы

Фотограмметрия - техническая наука о методах определения метрических характеристик объектов и их положения в двух- или трехмерном пространстве по снимкам, полученным с помощью специальных съемочных систем. Такими системами могут быть традиционные фотографические камеры, а также системы, использующие иные законы построения изображения и иные (кроме фотографических слоев) регистраторы электромагнитных излучений. Основная задача фотограмметрии — топографическое картографирование, а также создание специальных инженерных планов и карт, например кадастровых.

Файлы: 1 файл

Лекции ДЗЗ.doc

— 2.31 Мб (Скачать файл)

Тема 1. Вводная  лекция.

План:

 

Фотограмметрия - техническая наука о методах определения метрических характеристик объектов и их положения в двух- или трехмерном пространстве по снимкам, полученным с помощью специальных съемочных систем. Такими системами могут быть традиционные фотографические камеры, а также системы, использующие иные законы построения изображения и иные (кроме фотографических слоев) регистраторы электромагнитных излучений. Основная задача фотограмметрии — топографическое картографирование, а также создание специальных инженерных планов и карт, например кадастровых.

Фотограмметрические методы позволяют также экономично и  достаточно точно решать непосредственно  по снимкам некоторые прикладные задачи, например измерять площади  участков местности, определять их уклоны, получать количественные характеристики эрозионных процессов, выполнять вертикальную планировку с определением объема земляных работ и др.

Это направление метрической  обработки снимков принято называть прикладной фотограмметрией.

Метрической обработке  снимков обычно предшествует (иногда совмещается) процесс отбора подлежащих нанесению на изготавливаемые планы и карты объектов, которые опознают на анализируемых изображениях, определяют их качественные и количественные характеристики, положение границ и выражают полученные данные условными знаками. Этот процесс называют дешифрированием снимков. В процессе дешифрирования выполняют также досъемку не отобразившихся на снимках элементов ситуации.

В двадцатые годы прошлого столетия были сделаны попытки использования аэрофотоснимков для специализированного изучения лесов и в начале тридцатых годов — почв. Создание космических летательных аппаратов и съемочных систем, работающих в более широком диапазоне электромагнитных излучений с оперативной доставкой по радиоканалам результатов съемки на пункты приема, активизировало развитие этого направления. Оно получило название «дистанционное зондирование».

Под дистанционным зондированием понимают неконтактное изучение Земли (планет, спутников), ее поверхности, близповерхностного пространства и недр, отдельных объектов, динамических процессов и явлений путем регистрации и анализа их собственного или отраженного электромагнитного излучения. Регистрацию можно выполнять с помощью технических средств, установленных на аэро- и космических летательных аппаратах, а также, в частных случаях, на земной поверхности, например при исследовании динамики эрозионных и оползневых процессов, в гляциологии и др.

Принципиально к дистанционному зондированию можно отнести известные методы исследования недр Земли — сейсморазведку и гравиразведку, сканирующую эхолоцию дна водоемов и др. В изучении земельных ресурсов, кадастре, земельном и экологическом мониторинге используются методы зондирования только с помощью электромагнитных излучений.

Дистанционное зондирование, интенсивно развиваясь, выделилось в самостоятельное направление использования снимков. Международное фотограмметрическое общество (МФО), в которое входил СССР и входит ныне Россия, в 1980 г. преобразовано в Международное общество фотограмметрии и дистанционного зондирования (МОФ и ДЗ).

Взаимосвязь основных направлений  использования снимков и наименования направлений может быть представлена схемой.

 

 

 

Дешифрирование (интерпретация) технологически входит одновременно в обе части названия дисциплины. В дистанционном зондировании роль дешифрирования превалирующая.

Изучение дисциплины «Фотограмметрия и дистанционное  зондирование» опирается на знание дисциплин: математика, информатика, физика, экология, почвоведение, инженерное обустройство территории, геодезия, географические информационные системы (ГИС).

Знания, приобретенные  при изучении данной дисциплины, позволяют  специалистам, работающим в области  землеустройства, формирования кадастра недвижимости, мониторинга землепользования и охраны окружающей среды, получать или квалифицированно заказывать и использовать цифровые кадастровые планы и карты, а также получать сопутствующие специальные карты.

 

Тема 2. Дистанционное зондирование территории

План лекции:

    1. Понятие и методы дистанционного зондирования территории
    2. Электромагнитное излучение и его свойства
    3. Методы дистанционного зондирования

 

  1. Понятие и методы дистанционного зондирования территории

Дистанционное зондирование (ДЗ) означает получение информации о состоянии исследуемой территории по измеренным на расстоянии, без непосредственного контакта датчиков с поверхностью, характеристикам электромагнитного излучения.

Используется широкий  диапазон излучений от 0.4 мкм -30 м. В связи с этим используются различные средства съемки: фотографические, телевизионные, сканирующие, радиолокационные и др. Датчики могут быть установлены на космических аппаратах, самолетах и других носителях. Диапазон измеряемых электромагнитных волн - от долей микрометра (видимое оптическое излучение) до метров (радиоволны).

Методы ДЗЗ:

    • пассивные, т.е. использовать естественное отраженное или вторичное тепловое излучение объектов на поверхности Земли, обусловленное солнечной радиацией,
    • активные - использующие вынужденное излучение объектов, инициированное искусственным источником направленного действия.

Сама возможность идентификации  и классификации объектов по информации ДЗЗ основывается на том, что объекты  разных типов - горные породы, почвы, вода, растительность и т.д. - по-разному отражают и поглощают электромагнитное излучение в том или ином диапазоне длин волн.

Рис.1. Поглощение и отражение  объектами ЭМ излучения

Данные ДЗЗ, полученные с датчиков космического базирования, характеризуются большой степенью зависимости от прозрачности атмосферы. Поэтому на космических аппаратах устанавливаются многоканальные датчики пассивного и активного типов, регистрирующие электромагнитное излучение в спектральных диапазонах, расположенных в "окнах прозрачности" земной атмосферы.

Методика тематического  анализа данных ДЗЗ заключается  в определении спектральных диапазонов, чувствительных к изменениям спектральных свойств целевых объектов и выборе зависимостей, связывающих значения дистанционно измеренных яркостей с искомыми параметрами среды (состав, влажность, структура почв при мониторинге почв, типы растительности, уровни вегетации, проективное покрытие при мониторинге фитоценозов, содержание фитопланктона, минеральных взвешенных веществ, органического вещества при мониторинге водной среды и т.п.). Достоверность количественных результатов анализа определяется тем, известны или нет на момент измерений точные значения коэффициентов зависимостей между параметрами среды и спектральными характеристиками целевых объектов. Наиболее часто встречающийся способ повышения достоверности - проведение одновременно с космической съемкой тестовых измерений на репрезентативных участках.

Оперативное дистанционное  зондирование Земли методами аэро- и космической съёмки в кратчайшие сроки даёт людям информацию об изменении поверхности. Информация такого рода на большие территории служит для мониторинга как географических, так и техногенных процессов, анализ которых приносит значительную эффективность при управлении сферами человеческой жизнедеятельности. 

Но в первую очередь, аэрофотосъёмка находит широкое  применение в топографии - научной  дисциплине, занимающейся подробным  изучением земной поверхности в  геометрическом отношении и разработкой способов отображения этой поверхности на плоскости в виде топографических карт и планов. Практические работы по созданию оригинала топографических карт называются топографическими съёмками. Основным видом съёмки в целях картографирования территории России является аэрофототопографическая съёмка.

 

2. Электромагнитное  излучение и его свойства

Солнечное излучение, достигая Земли, частично отражается ее поверхностью, а частично поглощается, превращается в тепловую энергию и составляет собственное излучение Земли. Отраженная и излучаемая Землей радиация имеет волновую и корпускулярную природу и представляет спектр электромагнитных колебаний. Часть спектра от 0,4 до 0,7 мкм воспринимается человеческим зрением и называется видимой областью спектра.

 

Цвет

Длина волны, мкм

Фиолетовый

0,40 – 0,45

Синий

0,45 – 0,49

Зеленый

0,49 – 0,58

Желтый

0,58 – 0,60

Оранжевый

0,60 – 0,62

Красный

0,62 – 0,70


 

 

Рис. 2. Прозрачность атмосферы

 

Но среди света, отражаемого  поверхностью Земли, присутствуют лучи с длинами волн короче 0,4 мкм, названные ультрафиолетовыми, и от 0,7 мкм до 3 мкм — ближними инфракрасными (ИК).

Более длинноволновая часть спектра, где преобладает собственное  излучение Земли, делится на инфракрасный тепловой- и радиодиапазоны. Инфракрасный тепловой диапазон с длинами волн от 3 до 1000 мкм — это излучение земной поверхности в виде тепла, накопленного в результате превращения световой энергии в тепловую. Большая часть этого излучения поглощается атмосферой. Радиодиапазон включает длины волн больше 1 мм. В этом диапазоне можно регистрировать не только собственное излучение Земли, но и излучение, создаваемое искусственным источником.

Поступающее на земную поверхность  солнечное излучение проходит через  атмосферу, значительно преобразующую  его. Прозрачность атмосферы неодинакова по спектру (рис. 2). Излучение одних участков спектра (их называют окнами прозрачности) почти беспрепятственно проходит через атмосферу, излучение других большей частью отражается (рассеивается) или поглощается ею.

Поглощение атмосферой излучения (рис. 3) зависит прежде всего от поглощения парами воды, а также углекислым газом, озоном. В видимой области спектра атмосфера достаточно прозрачна.

 

Рис. 3. Приход солнечной радиации:

1 — на верхнюю границу атмосферы; 2 — на поверхность моря

 

Только облака могут существенно  поглощать излучение. В инфракрасной области поглощение самое высокое, здесь существуют лишь окна прозрачности: ближнее в интервале от 3 до 5 мкм и дальнее — от 8 до 14 мкм. Ближнее окно используется для регистрации отраженного солнечного излучения, а дальнее — собственного излучения Земли. Для волн радиодиапазона атмосфера полностью прозрачна, что делает актуальным совершенствование средств регистрации излучения в этой части спектра.

Рассеяние в атмосфере происходит на молекулах и аэрозолях. Согласно закону Рэлея, интенсивность рассеяния частицами, размеры которых меньше длины световой волны, обратно пропорциональна четвертой степени длины волны, т.е. в наибольшей степени рассеивается фиолетовый и синий свет. Рассеяние создает дополнительную яркость, искажая таким образом действительное соотношение отражательных свойств объектов по спектру.

Скопления более крупных молекул  и частицы аэрозоля создают ахроматичный рассеянный свет. Дымкой принято называть свечение слоя атмосферы, находящегося между объектом и наблюдателем (съемочной системой), вызванное рассеянием света на флуктуационных неоднородностях газов и на твердых частицах. Она ослабляет световой поток, регистрируемый приемником излучения, но одновременно создает дополнительное свечение, что приводит к понижению контраста на снимках, полученных в видимой области спектра. Дымка может создаваться твердыми частицами как естественного происхождения, например, пыли или соли, так и привнесенными в атмосферу в результате хозяйственной деятельности человека.

Интенсивность дымки зависит от угла между падающим солнечным лучом  и направлением визирования. На снимках, полученных при низком Солнце и широкоугольными  съемочными камерами, влияние дымки  может быть очень существенным. Оно выражается в снижении контраста на краях снимка, особенно в его посолнечной (находящейся дальше от Солнца) части.

Освещенность  земной поверхности, т.е. количество световой энергии, приходящейся на единицу площади, преимущественно складывается из прямой и рассеянной солнечной радиации, соотношение между которыми меняется в зависимости от высоты Солнца, крутизны и ориентировки склонов.

При высоком Солнце преобладает прямая радиация, что приводит к резким различиям в освещенности склонов разной экспозиции: одни склоны оказываются освещенными, другие — в тени или полутени. В ясный, безоблачный день в околополуденные часы освещенность склонов может различаться в четыре—шесть раз. Тени в это время занимают наименьшую площадь, но зато плотность их очень велика, поэтому объекты в тенях распознаются очень неуверенно или не распознаются вовсе. При низком Солнце возрастает доля рассеянной радиации, тени становятся более прозрачными, хотя и значительно большими по площади. Разница в освещенности склонов разной экспозиции уменьшается.

Информация о работе Лекции по фотограметрии