Лекции по фотограметрии

Автор работы: Пользователь скрыл имя, 14 Января 2013 в 00:52, лекция

Описание работы

Фотограмметрия - техническая наука о методах определения метрических характеристик объектов и их положения в двух- или трехмерном пространстве по снимкам, полученным с помощью специальных съемочных систем. Такими системами могут быть традиционные фотографические камеры, а также системы, использующие иные законы построения изображения и иные (кроме фотографических слоев) регистраторы электромагнитных излучений. Основная задача фотограмметрии — топографическое картографирование, а также создание специальных инженерных планов и карт, например кадастровых.

Файлы: 1 файл

Лекции ДЗЗ.doc

— 2.31 Мб (Скачать файл)

Процесс создания и изучения моделей — моделирование —  одна из основных категорий теории познания: на идее моделирования, по существу, базируется любой метод научного исследования, как теоретический, так и экспериментальный.

Моделирование может  быть семантическим (словесным), аналоговым и математическим.

В фотограмметрии наиболее широкое распространение получило математическое моделирование, которое описывает изучаемые объекты или явления в виде:

формул (аналитические модели);

геометрических образов (геометрические модели);

массивов чисел (цифровые модели).

Цифровая модель местности (ЦММ) представляет собой многомерную цифровую запись информации о местности на магнитном носителе. В цифровых информационных потоках информация хранится поэлементно. Каждый элемент ЦММ имеет п численных характеристик, три из которых — пространственные координаты точки местности, остальные — закодированные числами семантические характеристики этой точки.

Цифровую модель местности, содержащую информацию о пространственном положении объектов местности, а также семантическую информацию об этих объектах, можно представить как совокупность цифровой модели рельефа (ЦМР) и цифровой модели ситуации (ЦМС).

Под ЦМР понимают массив чисел, являющихся пространственными координатами точек местности. ЦМС также представляет собой массив чисел, каждым элементом которого являются плановые координаты поворотных точек границ объектов и закодированная числами семантическая информация об этих объектах. Содержание контуров определяется тематикой модели ситуации — это могут быть топографические элементы, сельскохозяйственные угодья, лесотаксационные единицы, почвенные разности и т. п.

Цифровые модели местности  являются базой для создания широкого спектра картографической продукции, используемой землеустроительными и кадастровыми службами. Это цифровые (электронные) карты, фотопланы, контурные фотопланы, топографические фотопланы, ортофотопланы, фотокарты, топографические планы, ЗБ-изображения.

Цифровая (электронная) карта (ЦК) — это объединение цифровой модели рельефа и нескольких цифровых моделей ситуации. Каждая ЦМС представляет собой так называемый слой ЦК. Все слои ЦК связаны между собой посредством ЦМР.

Как правило, в цифровых картах используют географические координаты, поэтому цифровые карты не имеют масштаба. При визуализации цифровая карта может быть представлена в любом

масштабе, но не крупнее  того, точность которого соответствует  точности исходных данных для создания ЦК.

Цифровые карты содержат значительно больший объем информации, нежели традиционные графические карты, благодаря послойному ее хранению.

Кроме того, цифровые карты  физически не устаревают, не ветшают. Информацию о местности на современном уровне поддерживают ведением непрерывного мониторинга и картографического дежурства.

Фотоплан — фотографическое одномасштабное изображение местности в заданном, обычно стандартном масштабе, на которое нанесена координатная сетка. Как правило, фотопланы изготавливают в рамках трапеций государственной или условной разграфки или на территорию отдельных землепользовании.

На контурных фотопланах условными знаками показаны необходимые элементы ситуации, некоторые элементы естественного рельефа: бровки балок, оврагов, линии резкого изменения крутизны склонов, а также искусственные формы рельефа.

На топографических фототанах условными знаками показана ситуация и нанесены горизонтали.

После удаления фотоизображения  контурные и топографические фотопланы превращаются соответственно в контурные и топографические планы.

Иногда, например при  проектировании противоэрозионных  мероприятий, целесообразно сохранить  фотоизображение, несущее максимум информации об эрозионных процессах. В таких случаях на топографических фотопланах число условных знаков уменьшается до необходимого минимума. В результате получается продукция, называемая фотокартой.

Ортофотоплан  — фотографическое изображение местности в ортогональной проекции. Первоначально по экономическим соображениям ортофотопланы изготавливали преимущественно на горные территории. В настоящее время ортофотопланы получают на различные районы местности с любыми превышениями и формами рельефа.

ЪТ>-изображение — это изображение трехмерных объектов на плоскости. Эта новая форма представления пространственной информации находит широкое применение в различных сферах научной и производственной деятельности.

12.2. СИСТЕМЫ  КООРДИНАТ, ПРИМЕНЯЕМЫЕ В ФОТОГРАММЕТРИИ

В фотограмметрии обычно используют следующие системы координат.

Для определения положения точки на снимке, как уже описывалось в части II, применяют правую плоскую прямоугольную си-

стему координат  снимка о'ху (рис. 12.1). Началом системы координат является точка о' — точка пересечения прямых, соединяющих координатные метки снимка 1—2 и 3—4, Ось х совпадает с прямой 1—2, а ее положительное направление — с направлением полета. Ось у перпендикулярна оси х и проходит через о'. Координаты точек (х, у), измеренные в системе координат снимка, называют плоскими координатами.

Для определения положения центра проекции S относительно снимка используют пространственную систему координат снимка o'xyz (рис. 12.2). В этом случае начало системы координат и оси х и у те же, что и в плоской системе координат снимка. Ось o'z перпендикулярна плоскости снимка и дополняет систему до правой.

Взаимное положение  точек местности определяют в пространственной фотограмметрической системе координат. Это правая система координат. Начало системы и направления координатных осей выбирают произвольно. Часто начало системы координат совмещают с центром проекции S— SXYZvuivi с какой-либо точкой местности М— MXYZ. Плоскость XYпринимают горизонтальной или параллельной плоскости снимка (рис. 12.3).

Положение точек местности  определяют в левой геодезической системе прямоугольных координат Гаусса— ОГ Хг Yr Zr. Начало геодезической системы координат Ог находится в точке пересечения осевого меридиана данной зоны и экватора. Плоскость XrYr — горизонтальная. Ось YT направлена на восток, ось Хг — на север (рис. 12.4). Условная геодезическая система координат может иметь началом любую точку местности, а ее оси сонаправлены соответствующим осям системы координат Гаусса (рис. 12.5).

12.3. ЭЛЕМЕНТЫ  ОРИЕНТИРОВАНИЯ ОДИНОЧНОГО СНИМКА

Различают элементы внутреннего  и внешнего ориентирования снимка.

Элементы внутреннего  ориентирования определяют положение центра проекции S относительно снимка. Ими являются координаты точки S в пространственной системе координат снимка (рис. 12.6, а). Поскольку проекцией точки S на плоскости снимка является главная точка о, то их плановые координаты хи^в системе координат снимка совпадают, аппликатой точки S является расстояние So, т. е. фокусное расстояние АФА/ Таким образом, элементами внутреннего ориентирования снимка являются координаты главной точки снимка хь, уо и фокусное расстояние АФА / Эти элементы почти всегда известны с высокой точностью и записаны в паспорте АФА. Например,/= 100,020 мм; xq = -0,012 мм; у0 = +0,023 мм.

Элементы внутреннего  ориентирования снимка формируют связку проектирующих лучей, существовавшую при съемке. Ее положение в пространстве определяют элементы внешнего ориентирования снимка. Их шесть. Это три линейных элемента — гео- координаты центра проекции S (Xs, Ys, Zs) и три угловых элемента наклона и поворота снимка (рис. 12.6, б):

а — продольный угол наклона снимка (угол между осью Z и проекцией главного луча на плоскость XZ);

со — поперечный угол наклона снимка (угол между главным  лучом и проекцией главного луча на плоскость XZ);

ае — угол поворота снимка (угол на снимке между осью у и следом сечения плоскости снимка с плоскостью, построенной на главном луче и оси Y).

В аналитической фотограмметрии горизонтальным снимком называют снимок, все три угла наклона и поворота которого равны нулю, т. е. а = со = ае = 0.

Следует заметить, что для всех снимков, полученных данным АФА, элементы внутреннего ориентирования можно считать постоянными известными величинами. Однако элементы внешнего ориентирования у каждого снимка свои и, как правило, неизвестны.

 

 

 

 

 

 

Задачу по определению  геодезических координат точки местности по измеренным координатам ее изображения на снимке называют прямой фотограмметрической засечкой.

 

12.5. ЦИФРОВЫЕ  МОДЕЛИ РЕЛЬЕФА

Цифровая модель рельефа (ЦМР) — это цифровое представление земной поверхности как непрерывного явления, описывающее ее с определенной точностью. Под ЦМР понимают множество точек с известными геодезическими координатами (Xе, У, 2Т) и правило определения высоты Z? любой другой точки, не входящей в это множество. Точки с известными геодезическими координатами в данном случае принято называть высотными пикетами. Правило определения высоты называют правилом интерполяции высот, или аналитической моделью рельефа (AMP).

Методы построения цифровых моделей рельефа различаются  по схемам расположения высотных пикетов и по способам интерполяции высот в промежутках между ними.

По схемам расположения высотных пикетов ЦМР делят на регулярные, полурегулярные и структурные.

В регулярных моделях высотные пикеты расположены в узлах сеток квадратов, прямоугольников или равносторонних треугольников (рис. 12.7). Недостатком этих моделей является то, что наиболее значимые точки рельефа, находящиеся на линиях тальвегов и водоразделов, перегибах скатов, могут оказаться между узлами сетки и не отобразиться на ЦМР. В связи с этим важно выбрать оптимальный шаг сетки, так как с его увеличением возрастают погрешности ЦМР, а с уменьшением — объем ЦМР, время и средства на ее создание.

В полурегулярных моделях (рис. 12.8) высотные пикеты располагают на поперечниках к заданным линиям. Пикеты могут находиться на поперечниках либо на одинаковых расстояниях дру друга, либо на перегибах скатов. Полурегулярные ЦМР в основном используют при проектировании трасс линейных сооружений (дорог, линий электропередач, нефте- и газопроводов и т. п.).

Рис. 12.8. Полурегулярная цифровая модель рельефа

Для наиболее правильного  описания характера рельефа меньшим  числом высотных пи-

кетов создают структурные ЦМР (рис. 12.9). В этих моделях положение высотных пикетов определяется структурой рельефа —их выбирают в его характерных точках.

Координаты высотных пикетов, используемых для построения ЦМР, могут быть получены в результате полевых геодезических измерений, по топографическим картам, по результатам воздушного и космического лазерного сканирования, путем стереофото-грамметрической обработки снимков.

Для определения отметок  точек, находящихся между высотными пикетами, применяют различные способы линейного и нелинейного интерполирования.

При использовании регулярных ЦМР с малым шагом сетки отметки промежуточных точек можно определить двойным линейным интерполированием (рис. 12.10).

Высота /-Й точки с  плановыми координатами (Х„ Yj) может быть определена с использованием полинома первой, второй и реже третьей степени. Например,

 

 

 

 

12.6. ОПРЕДЕЛЕНИЕ  ЭЛЕМЕНТОВ ОРИЕНТИРОВАНИЯ СНИМКА

Решение прямой фотограмметрической  засечки возможно при условии, что  элементы ориентирования снимка известны.

Элементы внутреннего  ориентирования, как правило, известны. Их определяют при калибровке АФА с точностью 0,001 мм и записывают в его паспорт.

Элементы внешнего ориентирования снимка можно определить различными способами. Их делят на две группы.

Первую группу составляют способы определения элементов  внешнего ориентирования снимков в  полете с помощью специальных приборов. Например, координаты центров проекций находят по показаниям GPS-приемников, установленных на борту летательного аппарата. Угловые элементы внешнего ориентирования определяют с помощью инерциальных систем навигации. Координаты центров проекции в этом случае определяют с точностью 10...20 см, а угловые элементы с точностью 3...4'.

Способы второй группы позволяют  определять элементы внешнего ориентирования снимков по опорным точкам. Опорными точками (опознаками) называют точки с известными геодезическими координатами. Опорные точки могут быть плановыми — для них известны только плановые координаты (X, Y); высотными — с известной высотной координатой; планово-высотными — с тремя известными координатами (X, Y, Z). Определение элементов внешнего ориентирования снимков с использованием опорных точек называют обратной фотограм-

метрической засечкой, или задачей по ориентированию снимка. Ее решают аналитически с использованием уже известных из раздела 12.4 уравнений (12.2) связи координат точек снимка и местности.

В правых частях уравнений (12.2) содержатся все шесть искомых элементов внешнего ориентирования снимка. Для одной опорной точки с геодезическими координатами (Хг, Гг, Zr) и измеренными координатами (х, у) ее изображения на снимке можно составить два независимых уравнения вида (12.2) с шестью неизвестными величинами XTS, У§, Ц, а, со, ж. Чтобы однозначно определить все шесть элементов внешнего ориентирования, необходимо объединить в систему не менее шести независимых уравнений, содержащих искомые элементы. Для этого требуется не менее трех планово-высотных опорных точек.

Информация о работе Лекции по фотограметрии