Техногенный риск

Автор работы: Пользователь скрыл имя, 16 Июня 2013 в 17:04, реферат

Описание работы

Быстрое развитие техногенных объектов является неотъемлемой чертой современного этапа развития человечества. Их эксплуатация позволяет решать многочисленные задачи повышения уровня и качества жизни людей, обеспечения безопасности индивидуумов, сообществ и государств. В то же время сооружение, эксплуатация и демонтаж техногенных объектов в свою очередь порождают факторы опасности, обусловливающие возможность негативного воздействия на людей и окружающую природную среду. Многие экологические проблемы современности связаны с резким ростом производства и потребления энергии, использованием ядерной энергии, экстенсивным использованием вредных химический веществ.

Содержание работы

Особенности рисков, связанных с техногенными объектами……………………………..….…..4
Основные типы природно-техногенных аварий и катастроф………… ……………………...….5
Источники техногенных рисков…………………………………………………………….…..….9
Риски при техногенных и природных катастрофах…………………………………….………..10
Концепция физико-химических основ идентификации потенциальных
источников опасности……………………………………………………………………………....12
Риски при аварийных состояниях…………………………………………………..…………...…18
Ресурс и безопасность несущих конструкций по критериям прочности,
долговечности и механики разрушения………………………………………………………..….20
Диагностика и контроль запроектных аварий на АЭС………………………….…………….....22
Системы контроля и диагностирования оборудования добычи
нефти и газа, магистральных газонефтепроводов……………………………………………...…24
Анализ риска…………………………………………………………………………..………..…...27
Оценка риска………………………………………………………………………..………..……...42
Основной метододический инструментарий……………………………………..…………….....43
Управление риском………………………………………………………………….…………....…53
Критерии управления риском………………………………………………………………………56

Файлы: 1 файл

Ноксология реферат.doc

— 1.17 Мб (Скачать файл)

 

К внутренним источникам обычно относятся:

    • ошибки собственных операторов;
    • внутренних саботаж;
    • отказы технических устройств, в составе технической системы;
    • разрушения несущих конструкция вследствие дефектов или усталости конструкционных материалов;
    • внутренние аварии, вызванные отключением питания, водоснабжения, перерывом технологических процессов и т.п.;
    • внутренние пожары, взрывы;
    • структура технической системы, наличие узлов и цепочек инцидентов;
    • иные.

Для технических объектов характерно накопление определенных запасов  энергии, концентрация энергии на ограниченных  пространствах.

Важно отметить, что для каждой технической системы существует свой набор источников опасности, как направленных на нее, так и исходящие от нее. По мере усложнения технической системы количество источников опасности увеличивается. Обычно источники опасности объединяются в различные группы, которые служат основой для факторного анализа техногенных рисков.

 

 

РИСКИ ПРИ ТЕХНОГЕННЫХ  И ПРИРОДНЫХ КАТАСТРОФАХ

Проблемы оценки рисков при возникновении  катастроф природного и техногенного характера приобрели особую актуальность на рубеже XX и XXI веков. Если принять, что история человеческого существования измеряется протяженностью 1,5 - 2,5 млн. лет, то для человека потенциальные опасности природного происхождения характеризуются выраженным наложением цикличности на медленно (на протяжении сотен миллионов и миллиардов лет) и монотонно протекающие процессы на Земле и в Космосе. Глобальные изменения состояния земной поверхности, Мирового океана и климата на Земле в связи с гелио-геопроцессами характеризуются большими циклами - от 10 - 20 тыс. лет до 500 - 1100 тыс. лет и более. Они вызывают глобальные потепления и похолодания, вариации положения земной оси, магнитного поля, состояния атмосферы, стратосферы и ионосферы.

На эти монотонные и  циклические процессы могут накладываться  случайные (с чрезвычайно малой  вероятностью до 10'8-10~9 и менее в год) планетарные природные катастрофы, обусловленные весьма большими (близкими к взрывным) изменениями активности Солнца, прохождениями планет через астероидные и метеоритные пояса с возможными их столкновениями.

Указанные выше монотонные, циклические и случайные процессы земного и космического масштаба приводят к кардинальным изменениям условий жизни на Земле. Несмотря на неизмеримо возросшие возможности человека противостоять природным и техногенным угрозам, закономерности и параметры этих процессов очень сложны в исследовании и количественном описании. В связи с этим такого рода глобальные катастрофы, затрагивающие все человечество и все живое на Земле, должны быть пока отнесены к гипотетическим, а степень реально прогнозируемой защищенности от них чрезвычайно мала. Последствия такого рода общепланетарных катастроф могут оцениваться как предельные, когда вероятность уничтожения жизни на Земле приближается к 100%. В этом случае риск летального исхода, обычно измеряемый числом смертей на 1000 человек, также составит 103. При общем числе жителей на Земле в настоящее время порядка 5-Ю9 и вероятности возникновения общепланетарных природных катастроф в 10'6-10~9 1/год, риск летального исхода для человека при такой катастрофе составляет 5-10°-5-103, а риск уничтожения жизни будет 106-109 1/год.

Глобальные природные катастрофы, обусловленные природными процессами на Земле и затрагивающие территории ряда стран и континентов (землетрясения, извержения вулканов, цунами, ураганы), зарегистрированы за период 103-104 лет с человеческими жертвами до 106 чел. При средней численности населения на период таких катастроф до 5-108 риск летального исхода для одного жителя Земли составляет от 2-Ю6 до 2-Ю7 1/год, или 2-10° на одну тысячу. Необратимый ущерб живому при этих катастрофах возникал на ограниченных территориях — до 5-10~6-107от поверхности Земли. Тогда риск уничтожения жизни на Земле при таких катастрофах можно оценить, как (2-5)-1010 1/год. Риск уничтожения жизни на 1-2 порядка меньше, чем при общепланетарных природных катастрофах; риск летального исхода при этом меньше в 5-102 раза.

Можно принять, что реальные техногенные угрозы для человека (пожары, взрывы, обрушения) на протяжении последних 104-103 лет стали значительными только в последние столетия, когда началось интенсивное гражданское строительство поселений, плотин, акведуков, дамб. Крупные пожары в древнеримских и средневековых городах возникали с периодичностью 50 - 100 лет и гибелью в них до 103 человек и более. В этом случае риск летального исхода составлял (1-2)-10*71/год или 2-10 2 на 1000 жителей. В последние десятилетия риск летального исхода при техногенных катастрофах в силу ускоренного развития техногенной сферы и неподготовленностью человечества к защите от них резко возрос и стал достигать (2-3)-10"1 на 1000 жителей. Эти риски становятся сопоставимыми или превосходят риски гибели людей при всех видах природных катастроф, составляющих (0,3-0,5)-101 на 1000 жителей.

В табл. 1.1.10. Приведены данные о вероятности летального исхода в быту и в профессиональной деятельности (6 человек/час). Летальность на транспорте, в горных работах и в строительстве может превышать бытовую в 3 — 5 раз и более. В России в последнее десятилетие многие из показателей индивидуального риска повысились в 1,5 — 2 раза.

Глобальными антропогенными катастрофами по своим последствиям можно считать крупнейшие войны. Если до начала XX столетия в этих войнах вероятность смертей достигала 0,3 - 0,5 на 1000 жителей, то в первой мировой войне этот показатель достиг 5, а во второй — 25 на 1000 жителей.

Появление оружия массового поражения — ядерного, химического и бактериологического — и угроза третьей мировой термоядерной войны сопряжены с возможностью антропогенной общепланетной катастрофы с вероятностью летального исхода 5-10°-Ы01. Это означает возможность многократного уничтожения всего человечества. При этом, как и при природных общепланетарных катастрофах, возможно уничтожение жизни на Земле с риском, превышающим указанный выше на много порядков.

Возможность и необходимость исключения такой войны в последнее десятилетие была показана расчетами и крупномасштабными экспериментами.

Таким образом, на протяжении последнего столетия резко изменились соотношения между рисками природных и техногенных катастроф. Человечеству необходима разработка новой концепции резкого уменьшения рисков и предотвращения чрезвычайных ситуаций от техногенных катастроф и снижения ущерба от природных катастроф.

 

 

 

КОНЦЕПЦИЯ ФИЗИКО-ХИМИЧЕСКИХ ОСНОВ ИДЕНТИФИКАЦИИ ПОТЕНЦИАЛЬНЫХ  ИСТОЧНИКОВ ОПАСНОСТИ

 

Процессы производства, хранения, транспортировки, переработки и применения различных химических соединений являются неотъемлемой основой современного народного хозяйства во всех его формах. Ряд из упомянутых веществ и способы их переработки являются потенциально опасными ввиду горючести, токсичности или склонности к взрывному превращению, а также в связи с повышенными уровнями параметров технологических операций (в первую очередь с особыми значениями температуры и давления). Широкий спектр химических веществ, вовлеченных в обращение при хозяйственной деятельности, разнообразие технологических схем предопределяет возможное разнообразие вариантов аварийных техногенных ситуаций и их последствий. Дополнительное осложнение сопряжено с сосуществованием сложных технических систем с конкретными природными факторами риска, порождаемыми стихийными явлениями, становящимися в ряде случаев спусковым механизмом для последующей техногенной катастрофы.

Накопленная статистика о техногенных катастрофах и  анализ основных причин гибели людей и разрушения производственных помещений и жилых комплексов позволяет сделать определенные концептуальные выводы об основных факторах опасности, сопровождающих промышленные аварии и природные катастрофы, обусловленные физическими и химическими процессами, происходящими с веществами и соединениями, вовлеченными в аварию. Основными причинами гибели персонала аварийного технического объекта и людей на территории, прилегающей к нему, являются:

-  разрушение зданий и сооружений;

-  различные формы пожара (преимущественный фактор поражения - тепловое);

-  разлетающиеся осколки и фрагменты оборудования (осколочное поражение);

-  падение, столкновение  или удар биообъектов с неподвижными  элементами конструкций;

-  отравление (удушение) газообразными продуктами выброса либо исходных соединений, либо соединений, образовавшихся при химическом превращении в процессе аварии (токсическое поражение);

-  прямое поражение ударными или взрывными волнами давления (фугасное поражение).

Примерная диаграмма  распределения несчастных случаев, обусловленных перечисленными причинами, представлена на рис. 3.1.

Представляет практический интерес экспертное заключение о  вероятности и частоте появления перечисленных факторов поражения при свершившейся промышленной аварии.

При особо крупномасштабных авариях замечалось дополнительное сотрясение почвы. На современном этапе этим фактором аварий пока пренебрегают из-за неизученности.

Кроме того, на основе анализа  последствий крупнейшей физико-химической аварии на продуктопроводе (Башкирия, июнь 1989 г.) сделан новый вывод ещё об одном последствии быстрого выгорания значительной массы углеводородного горючего вблизи неровной земной поверхности, покрытой порослями кустарника и низкорослого леса. Оказывается, что выгорание приземного слоя углеводородовоздушной смеси при центральном или периферийном поджигании способно вызвать мощный ураганный порыв движения атмосферы. В упомянутой аварии в Башкирии именно этот порыв воздуха вызвал ориентированный повал леса в направлении смещения воздушного вихря, образованного перемещением фронта пламени.

В связи с тем, что  разрушение зданий и сооружений в  основном вызывается фугасным действием  наружных взрывных превращений или  действием внутренних взрывов опасность  вызывающих их физико-химических процессов сводится к следующим основным факторам:

-  фугасный;

- тепловой;

-  осколочный;

-  токсический.

Сделанный вывод подтверждается также статистическими данными по авариям на газопроводах Средняя Азия - Центр. Распределение аварий по времени представлено на диаграмме (рис. 3.3.).

Избранная концепция  физико-химических основ идентификации  потенциальных источников опасности  позволяет избежать ненужной детализации и сформулировать методические подходы к анализу вероятной аварийной ситуации на произвольном промышленном объекте. Все эти подходы обоснованы на многочисленных исследованиях разнообразных химических и физических явлений, которые здесь не рассматриваются.

После того как на основе фундаментально-прикладных теоретических и экспериментальных исследований, а также данных расследований аварий, установлены основные факторы, характеризующие различные виды поражения при химико-термических авариях, и найдена их связь с параметрами источников опасности, состоянием окружающей среды и относительным расположением донора и акцептора фактора опасности, имеется реальная возможность оценить ожидаемый уровень ущерба для акцептора опасности. Акцепторами факторов поражения выступают различные биообъекты (в том числе и человек), объекты промышленной и жилой застройки, элементы конструкций, объекты растительного происхождения и сама окружающая среда. Каждый из акцепторов факторов поражения (фугасное, осколочное, тепловое, токсическое) испытывает как правило комбинированное влияние нескольких типов воздействия. На данном этапе понимания уровней, степени и особенностей поражения от комплексных источников опасности нет надежных критериев и методов оценки комбинированного воздействия. Поэтому приходится вынужденно рассматривать отдельные факторы опасности как изолированные и исключать эффекты аддитивности или синергетичности одновременного действия нескольких факторов поражения.

Имеется ряд  исторических причин, затрудняющих внедрение  современных способов оценки и использование новых критериев ожидаемого ущерба. В связи с анализом ущерба от оружия массового поражения сложилась практика пренебрежения эффектами конечного времени действия источников опасности при многих типичных авариях на предприятиях химической, топливо-энергетической, горнорудной и иных отраслей промышленности. Пренебрежение конечностью временного периода действия ранее было оправдано недостаточным уровнем понимания реального динамического отклика любых акцепторов поражения. В итоге многие нормативные документы существенно завышают ожидаемые отрицательные последствия аварии, приводят к неразумным дорогостоящим мерам противодействия, дезориентируют персонал при проведении профилактических, ликвидационных или защитных мероприятий. Ряд ошибок при оценках опасности обусловлен неполным осознанием вероятностного характера наступления определенного уровня поражения при известном уровне параметров анализируемого фактора воздействия (амплитуда волны давления, уровень температуры, величина теплового потока, уровень скоростей движения атмосферы и т.п.). Обычно считается, что достижение некоего критического уровня воздействия однозначно ведёт к 100% -ной вероятности реализации соответствующего ущерба. В действительности такой детерминизм никогда не реализуется и реальные разрушения оказываются намного менее значительны.

При анализе аварий необходимо установить типичные случаи утраты герметичности  в элементах технологического оборудования с описанием наиболее вероятных  мест разрушения и их масштабов. Другим важным аспектом при оценке опасности  является определение соответствующих химических и физических свойств веществ, используемых в технологическом процессе и находящихся на промышленной площадке. Такие свойства желательно знать как при штатных режимах работы, так и при экстремальных аварийных обстоятельствах. Особо следует выделить вероятность выброса токсичных и (или) реакционноспособных (горючих) веществ. При этом возможность выхода какого-либо химического процесса из-под контроля уместно предусмотреть на самых ранних стадиях предполагаемого сценария аварии. На основе выводов, полученных после реализации описанных этапов, определяется последовательность физико-химических явлений, возникающих при аварии, и оцениваются условия возможного контроля над их развитием с учётом потенциальных способов подавления. Как правило сценарий аварии и её последствия заданы свойствами веществ, используемых в элементах оборудования, среди которых наиболее важными являются: фазовое состояние (жидкость, газ, двухфазная система); давление; температура; способность к воспламенению и горению; токсичность.

Информация о работе Техногенный риск