Технология построения высокоточной спутниковой геодезической сети

Автор работы: Пользователь скрыл имя, 19 Мая 2013 в 12:28, дипломная работа

Описание работы

Целью дипломной работы является разработка комплексной методики применения спутниковых технологий для создания высокоточной геодезической основы в процессе реконструкции визуальных аэронавигационных средств на аэродромах. В связи с этим в рамках данной работы будет рассмотрен следующий комплекс вопросов:
• Выполнение подготовительных работ, включая расчет необходимой точности создания сети, а также анализ современного геодезического оборудования и программного обеспечения исходя из полученной точности;
• Технология построения высокоточной спутниковой геодезической сети на основе использования существующих в нашей стране методов ее создания с учетом минимизации влияния основных источников ошибок на результаты измерений;
• Процесс обработки GPS измерений с использованием современного программного комплекса, а также трансформирование координат из глобальной координатной системы WGS-84 в местную локальную систему с оценкой точности полученных значений.

Содержание работы

ВВЕДЕНИЕ…………………………………………………………………...
1. КОМПЛЕКС ПОДГОТОВИТЕЛЬНЫХ РАБОТ ПРИ СОЗДАНИИ ЛОКАЛЬНОЙ ГЕОДЕЗИЧЕСКОЙ СЕТИ НА АЭРОДРОМЕ ШЕРЕМЕТЬЕВО.……………………..……………………………….
1.1. Расчет требуемой точности геодезической сети……………...
1.2. Анализ GPS приемников………………………………………..
1.3. Обзор программы для обработки GPS данных………………..
2. ТЕХНОЛОГИЯ ПОСТРОЕНИЯ ВЫСОКОТОЧНОЙ СПУТНИКОВОЙ ГЕОДЕЗИЧЕСКОЙ СЕТИ……………………….
2.1. Принципы построения локальной геодезической сети спутниковыми методами……………………………………….
2.2. Основные источники ошибок спутниковых измерений и методы ослабления их влияния………………………………..
2.2.1. Ошибки эфемерид спутников…………………………….
2.2.2. Влияние внешней среды…………………………………..
2.2.2.1. Влияние ионосферы………………………………….
2.2.2.2. Влияние тропосферы………………………………...
2.2.2.3. Многопутность распространения сигнала………….
2.2.3. Инструментальные источники ошибок…………………..
2.2.3.1. Вариации фазового центра антенны приемника…...
2.2.3.2. Ошибки хода часов на спутнике и в приемнике…...
2.2.4. Геометрический фактор расположения спутников……..
2.3. Организация спутниковых наблюдений на геодезических пунктах аэродрома Шереметьево……………………………...
3. ОБРАБОТКА СПУТНИКОВЫХ ИЗМЕРЕНИЙ И ПОЛУЧЕНИЕ КООРДИНАТ В МЕСТНОЙ ЛОКАЛЬНОЙ СИСТЕМЕ…………...
3.1. Выгрузка результатов измерений из GPS приемников………
3.2. Определение координат пунктов в системе WGS-84………..
3.3. Преобразование координат в действующую наземную систему координат...……………………………………………
3.3.1. Способ перехода из координатной системы WGS-84 в наземные системы координат…………………………….
3.3.2. Переход из координатной системы WGS-84 к местной локальной системе координат…………………………….
4. ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ДИПЛОМНОЙ РАБОТЫ……………………………………………..
4.1. Организация работ по теме дипломного проекта……………..
4.2. Обоснование косвенной экономической эффективности……
4.3 Себестоимость дипломной работы……………………………..
4.4. Оценка значимости дипломной работы……………………….
5. ЭКОЛОГИЧЕСКАЯ ОЦЕНКА РАЙОНА РАБОТ. БЕЗОПАСНЫЕ МЕТОДЫ ПРОВЕДЕНИЯ ГЕОДЕЗИЧЕСКИХ РАБОТ……………
5.1. Физико-географическая характеристика района работ………
5.2. Экологическая оценка района работ…………………………..
5.3. Безопасные методы проведения геодезических работ……….
5.3.1. Общие положения…………………………………………
5.3.2. Безопасные методы проведения геодезических работ на территориях аэродромов и аэропортов…………………..
5.3.3. Безопасные методы проведения камеральных работ…...
ЗАКЛЮЧЕНИЕ………………………………………………………………
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ.......................................

Файлы: 1 файл

diplom_aero_mgugik.net.doc

— 2.16 Мб (Скачать файл)

Метод учета ухода  показаний часов на спутнике и  в приемнике получил наибольшее распространение при наблюдениях, выполняемых одной станцией, т.е. при определении абсолютных значений координат точки стояния приемника. При решении геодезических задач, предусматривающих использование дифференциальных методов, влияние рассматриваемого источника ошибок удается практически полностью исключить за счет применения метода вторых разностей.

 

2.2.4. Геометрический фактор  расположения спутников

 

Одна из характерных  для системы GPS особенностей определений местоположений точек на основе пространственной линейной засечки состоит в том, что результирующая точность координатных определений зависит не только от точности выполняемых дальномерных измерений, но и от геометрии наблюдаемых спутников. Для иллюстрации механизма понижения точности из-за плохой геометрии расположения участвующих в измерениях спутников рассмотрим приведенный на рисунке 2.6 пример двухмерного определения местоположения пункта Р при различных удалениях спутников друг от друга.

а)                                                 б)

Рис. 2.6. Двухмерное определение местоположения пункта Р при различных удалениях спутников друг от друга.

Если измеряемые до спутников S1, и S2, расстояния R1, и R2 измеряются с погрешностью m1, и m2, то при использовании метода линейной засечки местоположение определяемого пункта Р будет находиться в пределах показанной на рисунке 2.6.а области, получившей название эллипса ошибок. В случае взаимно перпендикулярных направлений на наблюдаемые спутники эллипс деформируется в окружность (рис. 2.6.б)

В этом случае достигается минимальное  влияние расположения спутников на точность производимых определений. Если же угол между направлениями приближается к 0° или к 180°, то эллипс становится весьма вытянутым. Погрешность определения координат определяемого пункта существенно возрастает.

Применительно к характерным для GPS трехмерным измерениям эллипс ошибок переходит в двухосный эллипсоид. Параметр, оценивающий возрастание погрешности измерений из-за геометрии расположения спутников, получил название геометрического фактора, который в современных публикациях принято обозначать аббревиатурой DOP (Delution of Precision - понижение точности). Этот параметр используется как связующее звено между результирующей точностью позиционирования и точностью измерений расстояний до спутников:

 

,                                        (2.12)

где:

mрез - средняя квадратическая ошибка определения местоположения пункта;

m0 - средняя квадратическая ошибка дальномерных измерений.

В зависимости от того, какие параметры должны быть определены при решении поставленной задачи, используют различные модифицированные понятия DOP. Наиболее универсальным показателем при этом является параметр GDOP (геометрический фактор понижения точности с учетом погрешности определения времени), характеризующий точность трехмерного позиционирования и времени:

,                           (2.13)

где:

mN mE и mh - средние квадратические ошибки определения координат по направлениям на север, на восток и по высоте;

mt - средняя квадратическая ошибка определения времени;

с - скорость электромагнитных волн.

Наряду с GDOP используются и такие показатели, как PDOP (фактор, учитывающий понижение точности трехмерного позиционирования без  учета погрешности определения  времени), HDOP (аналогичный фактор, но только для двухмерного позиционирования в горизонтальной плоскости), VDOP (фактор, характеризующий понижение точности в вертикальном направлении) и др.

Величину геометрического  фактора часто увязывают с объемом многогранной фигуры, вершины которой совмещают с местоположениями спутников и пункта наблюдения. При этом установлено, чем больше объем этой фигуры, тем слабее проявляется влияние геометрии расположения спутников на результирующую точность позиционирования. По мере взаимного сближения спутников этот объем уменьшается, а влияние геометрического фактора возрастает.

Предрасчет значения геометрического фактора может  быть произведен перед началом полевых работ на основе содержащейся в альманахе информации о расположение спутников на соответствующий момент времени и приближенного значения координат пункта наблюдения. На основе такой информации с помощью ЭВМ может быть построен график изменения того или иного геометрического фактора с течением времени, который характерен для интересующего пункта наблюдений.

Величина GDOP чаще всего используется как критерий возможности получения высокой точности GPS измерений в зависимости от геометрии расположения спутников. В качестве примера заметим, что фирма Leica (Швейцария) не рекомендует проводить высокоточные спутниковые геодезические измерения при значениях GDOP более 8.

На основе обобщения  приведенной выше информации может  быть сделано заключение о том, что  наиболее эффективным методом ослабления влияния геометрического фактора  на точность GPS позиционирования является выбор на стадии планирования спутниковых наблюдений наиболее благоприятных периодов времени.

 

2.3. Организация спутниковых наблюдений на геодезических пунктах аэродрома Шереметьево

Специфика процесса спутниковых измерений проявляется как на стадии проведения подготовительных работ, так и при организации наблюдений на пунктах.

При планировании времени  наблюдений следует учитывать необходимость  наблюдения с каждого пункта в  течение всего сеанса максимального количества спутников, а также геометрию их взаимного положения (значение геометрического фактора на протяжении всего сеанса наблюдений не должно превышать допустимого).

Для проведения наблюдений на геодезических пунктах аэродрома  Шереметьево был выбран следующий  режим работы спутниковых приёмников:

    • Угол возвышения спутников над горизонтом (угол маскирования) - не менее 15°;
    • Дискретность записи эпох - 5 сек.,
    • Режим измерений и последующей обработки - "Static";
    • Минимальное количество наблюдаемых спутников - 4.

Условия наблюдений (рис 2.7), количество и конфигурация спутников в течение суток обеспечивали возможность проводить GPS – наблюдения в интервалах времени с 4:00 до 12:00 и с 13:00 до 3:00 следующего дня.

Рис. 2.7. Альманах спутников на дату наблюдений

Величина GDOP в допустимые для работы интервалы времени не превышала 7 единиц, при допустимом значении 8 единиц.

Расчет продолжительности  сеанса наблюдений производится с учетом длины определяемых базисных линий и требуемой точности измерений. Применительно к создаваемой сети на линиях протяженностью 1 - 4 км для обеспечения точности взаимного положения пунктов на уровне 1см продолжительность сеанса наблюдений может быть ограничена двумя измерениями по 15 минут с перестановкой прибора.

При расчете оптимального количества одновременно работающих спутниковых  приемников определяющим фактором является технико-экономическое обоснование. Увеличение количества участвующих  в наблюдениях приемников позволяет  сократить сроки проведения полевых работ, но при этом возрастают расходы, связанные с арендой и доставкой большого количества техники, с необходимостью увеличения численности наблюдателей. Следует также отметить, что с увеличением количества  приемников возрастает количество избыточных измерений, что является позитивным показателем, повышающим надежность сети. Как следствие, точность построения сети с увеличением избыточных измерений существенно не повышается, но при этом расширяются возможности отбраковки грубых результатов  измерений.

Во второй главе была рассмотрена концепция создания высокоточной спутниковой геодезической  сети и выбрана оптимальная методика ее построения на аэродроме Шереметьево  с учетом влияния всех основных источников ошибок спутниковых измерений.

Далее рассмотрим процесс  обработки полевых измерений  в программном пакете Leica Geo Office (Leica, Швейцария) и выполним переход из системы WGS-84 в местную локальную  систему координат, используемую на аэродроме Шереметьево.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. ОБРАБОТКА СПУТНИКОВЫХ ИЗМЕРЕНИЙ И ПОЛУЧЕНИЕ КООРДИНАТ В МЕСТНОЙ ЛОКАЛЬНОЙ СИСТЕМЕ

Программа обработки  спутниковых измерений включает в себя предварительную обработку, производимую непосредственно в спутниковом приемнике и пост-обработку, которая выполняется в камеральных условиях с использованием данных, получаемых от нескольких приемников.

Предварительная обработка накопленной в GPS приемнике информации осуществляется по программе введенной в приемник, и сводится к предварительной отбраковке грубых отсчетов и компрессии исходной информации для регистрации. Эффективность такой обработки определяется, в первую очередь, совершенством программы. Оператор на этой стадии  практически не участвует в процессе обработки и не оказывает влияния на получаемые результаты.

Пост-обработка выполняется  на ЭВМ с использованием специальных  программных пакетов, в данном случае Leica Geo Office версии 3.0 (Leica, Швейцария) и включает в себя следующие этапы:

    • Выгрузка результатов измерений из GPS приемников;
    • Определение координат пунктов в системе WGS-84;
    • Преобразование координат в местную локальную систему.

 

3.1. Выгрузка результатов измерений из GPS приемников

По окончании выполнения процедуры GPS-измерений необходимо переслать накопленные на карте памяти приемника данные в персональный компьютер для дальнейшей обработки. В современных двухчастотных GPS приемниках GX1220 (Leica, Швейцария) используется универсальный для всех приборов SYSTEM 1200 формат записи данных raw, состоящий из совокупности файлов со следующей информацией:

    • Навигационное сообщение (эфемериды спутников, по которым проводились наблюдения, ионосферные и тропосферные поправки и т.д.);
    • Данные о точке расположения приемника, его типе, выбранном способе наблюдений и т.д.;
    • Результаты наблюдений (кодовые и фазовые измерения, доплеровские данные и т.д.);
    • Другие данные (метеорологические, информация о наблюдателе, метаданные).

После сохранения «сырых данных» с референцной и подвижной  станции  на компьютере, необходимо в главном меню программного комплекса Leica Geo Office создать новый проект работ и при помощи блока Import (рис.3.1) загрузить данные в этот проект.

Рис. 3.1. Меню блока Import программного комплекса LGO.

Далее производится предварительная  оценка полевых измерений и отбраковка некачественных или лишних измерений. По завершении всех описанных процессов можно приступать к обработке GPS-данных и определению координат пунктов, построенной на аэродроме Шереметьево локальной геодезической сети.

 

3.2. Определение координат пунктов в системе WGS-84

Для обработки импортированных данных в проект работ программы LGO следует перейти к вкладке GPS-Proc и в режиме Manual Processing Mode выделить интервалы, относящиеся к базовой и к подвижной станции соответственно (рис.3.2). Следует отметить, что предварительно в проект необходимо внести использовавшуюся в качестве референцной твердую точку (OGP2) с известными координатами в системе WGS-84.

Рис. 3.2. Обработка GPS измерений с помощью программы LGO.

После этого в панели инструментов требуется выбрать Process и программа начнет процесс вычисления координат пунктов.

Для определения координат в системе WGS-84 используется дифференциальный режим обработки данных, получаемых от различных приёмников. Он позволяет минимизировать или исключить влияние целого ряда наиболее ощутимых источников систематических ошибок.

В процессе вычислений повышенное внимание уделяется характерной для фазовых измерений процедуре разрешения неоднозначностей, т.е. определению целого числа циклов, укладывающихся в измеряемом расстоянии. При реализации этой процедуры могут возникать затруднения, требующие вмешательства оператора в процесс обработки. Такое вмешательство сводится во многих случаях к просмотру регистрационных файлов, содержащих исходные данные от отдельных GPS приемников, и корректировке стратегии обработки. При выявлении большого количества пропусков отдельных эпох наблюдений или каких-либо других дефектов оператор принимает необходимые меры по устранению мешающих факторов.

Определение отдельных базисных линий в программе Leica Geo Office производится в автоматическом режиме с учетом влияния тропосферы и ионосферы. В базе данных программного комплекса LGO имеются различные тропосферные модели, включая модели Хопфилда и Саастамойнена. Ионосферная же модель вычисляется по результатам двухчастотных измерений.

На заключительном этапе базисные линии объединяются в локальные сети и выполняется их уравнивание традиционными методами, базирующимися на использовании способа наименьших квадратов. Как правило, если спутниковые наблюдения были выполнены в благоприятных условиях, различие между уравненными и не уравненными значениями координат оказывается незначительным.

Информация о работе Технология построения высокоточной спутниковой геодезической сети