Зеленая химия

Автор работы: Пользователь скрыл имя, 16 Июня 2013 в 18:10, реферат

Описание работы

Сложившийся образ химии как науки, приносящей неисчислимые бедствия человечеству и разрушающей природу, к сожалению, имеет под собой определенные основания. Проблемы чистоты воздуха, воды и сохранения природы — насущные проблемы человечества, а для жителей городов и мегаполисов эти проблемы возрастают многократно. Коптящие заводские трубы, факелы, «лисьи хвосты», выбросы ТЭЦ и автомобилей — это все из нашей реальной жизни. Человечество, через два столетия развития современной химии и через сто лет промышленного ее применения, пришло к той незримой черте, когда очевидны стали две истины: 1) без химии (читайте: без новых материалов, эффективных лекарств, средств защиты растений, список можно продолжать до конца страницы) человек не может обойтись и 2) химическое производство в современном виде дальше существовать не должно.

Содержание работы

Введение……………………………………….. стр.2

Принципы зеленой химии……………………. стр.3

Биоразлагаемые полимеры…………………... стр.5

Принципы зеленой химии (продолжение)...... стр.7

Количественные оценки в зеленой химии …..стр.13

Как внедрить «зеленый» процесс……………. стр.15

Список использованной литературы………… стр.

Файлы: 1 файл

реферат зеленая химия Final.doc

— 490.00 Кб (Скачать файл)

С точки зрения защиты растений важен не столько процесс, сколько конечный результат, который может быть достигнут и другими путями, например, использованием феромонов вместо традиционных инсектицидов.

В последнее время широким фронтом ведутся также работы по получению биоразлагаемых полимеров для современных упаковок, в том числе и для пищевых продуктов. Остановимся на этом чуть подробнее.

 

Биоразлагаемые  полимеры.

Суммарный объем производства полимерных материалов во всем мире достигает многих десятков миллионов тонн. Свойства полимеров весьма разнообразны и определяются их областью применения. На основе полипропилена и ароматических полиамидов, например, созданы ценные конструкционные материалы, устойчивые к различным воздействиям. Эти материалы с успехом применяют, в частности, в строительстве и машиностроении.

Однако не во всех областях требуются  очень прочные и устойчивые к  различным воздействиям полимеры. К  таким областям относится, например, изготовление тары различного рода: мешки, пакеты, бутыли и т. д. Срок службы таких полимерных изделий невелик, вследствие чего многие миллионы тонн полиэтилена, полипропилена и других материалов ежегодно попадают на свалки. Эти материалы не гниют в почве и устойчивы к атмосферным воздействиям, так как в соответствующих организмах (грибы, бактерии) отсутствуют ферменты, способные разрушать синтетические полимерные материалы. Поэтому проблема защиты окружающей среды от устойчивых полимеров превратилась в одну из актуальных глобальных задач. Создав исключительно прочные полимерные материалы, химики теперь озабочены прямо противоположной проблемой: как получить материалы, обладающие непродолжительным сроком эксплуатации и способные разлагаться в природных условиях.

Исследования развиваются в двух направлениях:

1. Применение биополимеров. Биополимеры производятся живыми организмами и способны разлагаться в природных условиях. Речь при этом идет прежде всего о полисахаридах (крахмал, целлюлоза).

2. Синтез аналогов биополимеров, способных к разрушению под действием света или бактерий, а также полимеров, растворимых в воде.

На пути создания синтетических  биоразлагаемых полимеров достигнуты первые успехи.

Разработан процесс изготовления предметов тары из полиэтилена, в который внедрены частицы крахмала. Крахмал весьма неустойчив в природных условиях, вследствие чего все изделия из такого полимера разлагаются значительно быстрее, чем обычные полимеры.

Полезным полимером оказался поливинилацетат. При его гидролизе получают еще один биоразлагаемый материал - поливиниловый спирт.



 

 

                 поливинилацетат                                                                               поливиниловый спирт

 

Его ценным качеством является растворимость в воде. Тара, изготовленная из поливинилового спирта, оказывается очень проста в утилизации.

Специалисты в области «зеленой»  химии, перед которой в странах Западной Европы и США поставлены задачи создания безотходных и безопасных для окружающей среды технологий, возлагают большие надежды на полимолочную кислоту (ПМК).

 

 

     полимолочная кислота

 

ПМК - алифатический полиэфир, который  получают поликонденсацией молочной кислоты или полимеризацией циклического димерного лактида. ПМК легко разлагается в природных условиях или гидролизуется до молочной кислоты, которая может быть вновь превращена в полимер. Пленки ПМК обладают эластичностью, пригодны для изготовления тары, в том числе для пищевых продуктов, так как защищают упакованный товар от запахов и загрязнений. Полагают, что ПМК может оказаться особенно перспективной для изготовления синтетических ковров, поскольку пригодна для изготовления как лицевой стороны, так и основы ковра.

Разработан новый метод производства полимолочной кислоты. По этому методу синтетический полимерный материал впервые производят из ежегодно возобновляемого растительного сырья - углеводов кукурузы. Процесс начинается с ферментативного расщепления декстрозы до молочной кислоты. Полученную кислоту очищают и конденсируют в непрерывном процессе до низкомолекулярного полимера (с молекулярной массой -5000). Этот полимер деполимеризуется в расплаве в присутствии октаноата олова как катализатора. Полученные стереоизомерные лактиды разделяют, выделяя L-лактид в качестве преобладающего компонента, и полимеризуют. Варьируя содержание D-лактида, контролируют физические свойства высокомолекулярного полимера (молекулярная масса от 60 000 до 150 000). С учетом возврата молочной кислоты и лактида выход полимера, в целом, не ниже 90%.

Компания Дау Кемикал разработала  несколько лет назад полимер Nature Works на основе молочной кислоты. В шутку говоря, конфеты в обертке из этого материала можно съесть вместе с оберткой — вреда не будет, хотя вкусовые качества пока не гарантируются. Другими примерами таких замен морально устаревших и экологически «недружественных» полимеров на биоразлагаемые материалы являются замена полиакриловой кислоты полиглутаминовой кислотой, использование хитозанов и производных целлюлозы. Есть успехи и в России:

 

 

 

 

 

 

 

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (источник рисунка: база научных разработок РХТУ имени Д. И. Менделеева).

 

Гидрирование изофорона. Делаксан — твёрдая полиаминосилоксановая подложка для Pd катализатора




Принцип 5. Использование вспомогательных веществ (растворителей, экстрагентов и др.) по возможности должно быть сведено к минимуму (нулю).

Растворители выполняют несколько  функций: они играют роль транспорта (разведение краски, удаление грязи) или помогают смешивать компоненты. Также их используют для того, чтобы доставить или убрать тепло, более эффективно смешать реагенты или контролировать их реакционную способность. Абсолютное большинство растворителей, применяемых сейчас, — это летучие органические вещества, производные нефти. Следовательно, они во-первых, не бесконечны, во-вторых, пожаро- и взрывоопасны, а в-третьих, вредны для окружающей среды. Так же растворители и экстрагенты ни одним атомом не входят в состав конечного продукта (атомная эффективность равна нулю), но, в то же время, составляют во многих процессах значительную и довольно дорогостоящую долю материального баланса и их использование и переработка требуют больших капиталовложений (экстракционные и дистилляционные колонны, осушка, очистка, рецикл или сжигание). В качестве альтернативы в последнее время предлагаются новые растворители, обладающие определенными преимуществами по сравнению с традиционными растворителями, например, ионные жидкости, фторированные растворители, работающие в двухфазных системах, диоксид углерода (или легкие углеводороды и фреоны) в сверхкритических условиях, а также вода, в которой многие процессы органического синтеза могут быть достаточно эффективно осуществлены. (Сверхкритические жидкости — это газы, сжатые до такого состояния, что они почти становятся жидкостями, то есть их плотность приближается к плотности жидкости. Такое состояние возможно только при температурах более высоких, чем так называемые критические, поскольку ниже этого порога газ под давлением просто превратится в жидкость. Жидкости, например, воду, тоже можно перевести в сверхкритическое состояние при определённом давлении и температуре.) С использованием сверхкритического СО2 был разработан промышленный процесс гидрирования изофорона с получением триметилциклогексанона (около 1000 т в год). При традиционных технологиях гидрирование часто идёт с трудом, поскольку водород плохо растворяется в органике. В сверхкритической среде растворитель, водород и субстрат находятся в одном состоянии. Таким образом, процесс протекает более интенсивно, и к тому же непрерывно. Газоподобные свойства сверхкритической жидкости уменьшают вязкость реакционной смеси, за счёт этого увеличивается её приток к поверхности катализатора. С другой стороны, плотность, соответствующая жидкости, позволяет лучше проводить тепло, чем в газовой фазе. Реакция гидрирования изофорона в сверхкритических жидкостях  более селективна, проходит с большей скоростью и позволяет эффективнее  использовать катализатор

 

 

 

 

 

 

 

 

 

 

Схема проточного реактора для гидрирования органических соединений в scCO2 или сверхкритическом пропане. Сверхкритический CO2, водород и органический субстрат смешиваются в подогреваемом реакторе, оттуда смесь поступает в реактор, содержащий закреплённый катализатор (обычно благородный металл на подложке). В реакторе предусмотрен спектроскопический непрерывный контроль за прохождением реакции. Несмотря на то что объём реактора очень мал (5 или 10 мл), он позволяет получить до 1200 мл продукта.

Процессы органического синтеза в воде, как экологически наиболее чистом растворителе, постепенно завоевывают свои позиции. В качестве примера можно привести реакцию конденсации в присутствии индий содержащего катализатора в водной среде:

Отметим рециклизуемость катализатора в этом процессе. Наконец, существует большое число работ, в которых процессы органического синтеза проводятся вообще без растворителя. Особую актуальность имеют исследования процессов в условиях микроволновой активации, которая обеспечивает селективный нагрев полярных фрагментов молекул и способствует проведению процессов в мягких условиях и их ускорению.

Так вторичные спирты с высокой  селективностью могут быть конвертированы в кетоны в присутствии 



железосодержащего катализатора на глине:

 

Принцип 6. Энергетические расходы должны быть пересмотрены с точки зрения их экономии и воздействия на окружающую среду и минимизированы. По возможности химические процессы должны проводиться при низких температурах и давлениях.

Использование катализаторов, применение СВЧ (микроволнового облучения) для нагрева, использование параллельных схем, в которых тепло экзотермической реакции поглощается в параллельно протекающей эндотермической реакции (например, дегидрирование этилбензола в стирол и гидрирование нитробензола выделяющимся в первом процессе водородом), эффективное использование и рекуперация тепла— все эти подходы должны быть реализованы для превращения многих экологически малопривлекательных процессов в «зеленую» химию. Этим подходам в разработке новых технологий должна быть дана «зеленая улица» или «зеленый свет». Было показано на широком круге процессов, что использование всех этих инноваций дает возможность снизить энергонапряженность процесса (а цена энергии во многих, особенно крупнотоннажных, производствах сравнительно дешевых продуктов доходит до 20—30%).(Энергия — это эквивалент, измеряемый в кубометрах и тоннах природного газа или нефтепродуктов, а если посмотреть с другой стороны — эквивалент, измеряемый в тоннах СО2, выбрасываемого в атмосферу.

Осуществление процессов при низких давлениях и температурах — также существенный шаг в направлении экономии, поэтому выбор стратегии синтеза того или иного продукта должен базироваться на идее смягчения условий и совместимости всех стадий процесса.

Принцип 7. Сырье для получения продукта должно быть возобновляемым, а не исчерпаемым, если это экономически целесообразно и технически возможно.

В контексте тенденции к исчерпанию до конца 21 века основных запасов нефти  и природного газа, а спустя еще  несколько сотен лет и угля, особое значение имеет стратегия перехода на возобновляемое (растительное, природное) сырье, среди которого наиболее привлекательны растительные масла (особенно пальмовое, которое гораздо дешевле и производится в большем объеме, чем привычное нам подсолнечное), целлюлоза, хитин и получаемый из него хитозан, биомасса и бытовой мусор, которые в скором времени также могут стать ценным сырьем и будут продаваться и покупаться как нефть и газ. СО2 также рассматривается отчасти как возобновляемое сырье и поэтому новые идеи утилизации СО2 и химических процессов с участием СО2, например, получение поликарбонатов, целого класса биоразлагаемых полимеров, имеют исключительную ценность. В этой связи, некоторые крупные химические компании, большая часть продуктового портфеля которых получается в настоящее время из нефти и природного газа (через этилен и пропилен) всерьез рассматривают сценарии перехода на возобновляемое растительное сырье, например растительные масла, целлюлозу и другие углеводы, биомассу. Примерами реализации такого подхода могут быть биокаталитические процессы получения пирокатехина из D-глюкозы, брожения с получением этанола под действием дрожжей.

 

Принцип 8. Вспомогательные стадии получения производных (защита функциональных групп, введение блокирующих заместителей, временные модификации физических и химических процессов) должны быть по возможности исключены.

Многие процессы органического  синтеза, особенно в фармацевтической, парфюмерной и пищевой промышленности, включают большое число стадий введения защитных и блокирующих групп, которые затем удаляются и не входят в состав конечного продукта (очень низкая атомная эффективность). Разработка мягких и высокоселективных, в том числе регио-, стерео- и энантиоселективных процессов и катализаторов — прямая дорога к устранению необходимости в таких неэффективных стадиях. Особенно впечатляют недавние достижения ферментативного катализа.

Принцип 9. Каталитические системы и процессы (как можно более селективные) во всех случаях лучше, чем стехиометрические.

Информация о работе Зеленая химия