Характеристика оснований

Автор работы: Пользователь скрыл имя, 11 Мая 2012 в 17:53, курсовая работа

Описание работы

В данной работе рассмотрена суть характеристики оснований, что такое основание. В работе рассматриваются физические и химические свойства оснований, основные способы их получения. Также в данной работе имеются множество формул и таблиц.

Содержание работы

Введение………………………………………………………………………..6
Глава 1. Понятие оснований, как класса неорганических соединений.
Основания в теориях Дж. Бренстеда и Г. Льюиса………………………...….7
Глава 2. Физические свойства оснований……………………….………….....13
2.1 Физические свойства оснований………………………………….....13
2.2 Растворимость в воде, произведение растворимости………….......13
2.3 Константа диссоциации растворимых оснований………………....15
Глава 3. Основные способы получения оснований……………………….....17
3.1 Лабораторные способы получения оснований………………….....17
3.2 Промышленные способы получения оснований…………….…….20
Глава 4. Химические свойства…………………………………………….…...27
4.1 Взаимодействие с кислотами. Реакция нейтрализации………..…..27
4.2 Взаимодействие с кислотными оксидами……………………….….28
4.3 Амфотерные гидроксиды, взаимодействие с гидроокисями
щелочных металлов…………………………………………….…......28
4.4 Термическое разложение нерастворимых в воде оснований…..…30
4.5 Взаимодействие с солями металлов………………………………....30
Глава 5. Использование оснований в химии и промышленности……….…..31
Заключение……………………………………………………………….....…..34
Библиографический список……………………………………………….…...35

Файлы: 1 файл

курсовая работа по химии.doc

— 1.19 Мб (Скачать файл)

Протолиты, которые в одних условиях могут отдавать свои протоны, а в других – принимать протоны, называют амфолитами. Таким образом амфолиты могут одновременно быть донорами и акцепторами протонов.      

В соответствии с протонной теорией вода является по отношению к самой себе амфолитом:

что объясняет протекание автопротолиза воды: . Автопротолиз воды количественно характеризуется ионным произведением воды: при 25°С. Значение К невелико и указывает на малую степень протекания автопротолиза воды.

Протолиты в водном растворе подвержены протолизу в различной степени. В связи с этим различают сильные и слабые протолиты (аналогично сильные и слабым окислителям и восстановителям в водном растворе).

Сильные протолиты (кислоты, основания) подвергаются протолизу в большей степени.

Слабые протолиты (кислоты, основания) подвергаются протолизу в малой степени.

Установление абсолютной силы протолитов по их сродству к протону в принципе возможно, однако практически трудно осуществимо и требует сложной измерительной техники. Практически достаточно знать относительную силу протолитов ( по отношению к некоторому эталону ). Для водных растворов протолитов таким эталоном кислотности и основности является растворитель – вода.

Мерой относительной силы протолитов в водном растворе служит величина рКк. В соответствии с определением рКк:

       слабая кислота является тем более сильным протолитом, чем ниже значе­ние рКк соответствующей сопряженной пары;

       слабое основание является тем более сильным протолитом, чем выше значение рКк соответствующей сопряженной пары.

А13+ • Н2О + Н2О = А1ОН2+ + Н3О-

Слабыми основаниями по Бренстеду будут все анионы, сопряженные со слабыми кислотами и не содержащие собственных протонов:

Многие гидроанионы, такие как , , , в водном растворе являются амфолитами. Их протолиз протекает в малой степени и состоит из двух реакций, в одной из которых реагент играет роль слабой кислоты, а в другой - роль основания.

Амфолитами по отношению к воде являются также амфотерные гидроксиды, такие как Ве(ОН)2, Zп(ОН)2, А1(0Н)3 и Сг(ОН)3. Они мало раство­римы в воде; та их часть, которая переходит в раствор, быстро гидратируется ( условно одной молекулой воды, например А1(ОН)3×Н2О ) и вступает в две одновременно протекающие реакции протолиза ( как кислота и как основание ):

Определение кислот и оснований по Бренстеду позволяет систематизировать множество химических реакций. В первую очередь это относится к тем реакциям, которые по Аррениусу рассматриваются как нейтрализация и гидролиз солей ( 1, ст. 146 - 161 ). Реакция нейтрализация по Бренстеду обратная автопротолизу воды, а поскольку последний протекает в малой степени, то реакция нейтрализации оказывается практически необратимо проходящей до конца.

Рассмотрим реакцию нейтрализации между эквимолярными количества НС1 и NаОН в водном растворе, она характеризуется процессами:

протолиз    

электролитическая диссоциация 

нейтрализация

По Бренстеду NаОН не есть основание ( как в теории Аррениуса ), а служит лишь источником ионов ОН- в водном растворе ( сами же ионы являются сильнейшим основанием ).

Более общее понятие о природе кислот и оснований и их диссоциации имеет теория Г. Льюиса. Он обозначил кислоту как акцептор пары электронов, а основание как донора электронной пары. Согласно теории Г. Льюиса кислотно – основные реакции – это взаимодействия в которых неразделенная пара электронов молекулы основы присоединяется к молекуле кислоты, в следствии чего возникает ковалентная связь. Взаимодействие между кислотой ( ) и основанием ( Н2О ) с получением Н2SO4 можно изобразить схемой приведенной на рисунке 1.

 

Рис. 1.

Теория Г. Льюиса очень удобна для выяснения механизма органических реакций. Но для пояснения характера кислотно – основных взаимодействий более целесообразно использовать теорию Бренстеда.

Теория Бренстеда развита и дополнена Н. А. Измайловым, а также его учениками В. В. Александровым, В. Д. Безуглым. Универсальный характер носит теория кислот и основ выдвинутая М. И. Усановичем.


Глава 2. Физические свойства оснований.

 

Рассмотрим обобщенные физические свойства оснований, их агрегатное состояние, растворимость в воде и других растворителях, цвет, электропроводимость плотность и другие параметры. Эти параметры позволят далее прогнозировать применение гидроксидов в промышленности, связать их физические и химические свойства.

 

2.1                         Физические свойства оснований.

 

Щелочи ( гидроксиды натрия, калия, лития ) образуют твердые, белые, очень гигроскопические кристаллы. Температура плавления 322°С, КОН 405°С, а 473°С. Кристаллические решетки у гидроксида калия кубическая, типа NaCl, а у гидроксида калия тетрагональная.

Гидроксиды кальция, магния, бериллия, бария образуют белые порошки, также довольно гигроскопические, но не настолько как щелочи. Образуют гексагональную кристаллическую решетку, температуры плавления их не высоки из – за разложения на оксид и воду.

Гидроксиды других металлов ( алюминия, меди, цинка и др. ) образуют осадки разных цветов, чаще белые. Имеющие цвет гидроксиды используют в качестве пигментов при производстве эмалей, глазурей.

 

2.2                         Растворимость в воде, произведение растворимости.

 

Хорошо в воде растворимы лишь щелочи, значительно меньше основания металлов второй группы (главной подгруппы), а все остальные в воде практически не растворимы.

За нормальных условий в 1 л. воды растворяется 494 г КОН. Гидроксид лития в воде растворяется значительно хуже, чем гидроксиды других щелочных металлов. При температуре 0°С в 1 л. воды растворяется 109 г .

Для характеристики растворимости молорастворимых в воде электролитов введено понятие произведения растворимости ПР. Оно равно произведению равновесных молярных концентраций катионов и анионов этого вещества в насыщенном водном расстворе. Рассмотрим произведение растворимости на примере гидроксида марганца.

, ПР= 2,3×10-13

растворимость вещества будет равна:

С помощью произведения растворимости можно вычислить значения концентраций ионов в растворе. Значения произведений растворимости многих молорасстворимых в воде оснований приведены в таблице 1 ( где рПР=-lg ПР ).

Таблица 1. Значения произведений растворимости оснований.

 

Основание

pПР

Основание

ПР

Ca(OH)2

5,2

La(OH)3

22,44

19,25

Mg(OH)2

11,7

14,8

12,64

15,1

Ni(OH)2

13.8

Sc(OH)3

27,06

16,3

37,4

15,7

 

Значения произведений растворимости широко используют в химических расчетах в аналитической химии, токсикологии.

 

 

 

2.3                         Константа диссоциации растворимых оснований.

 

Из предыдущего подраздела можно увидеть, что большинство гидроксидов за нормальных условий не растворимы в воде. И лишь щелочи и гидроксиды второй группы, главной подгруппы, периодической системы химических элементов Д. И. Менделеева, растворимы в воде в той или иной мере.

В водных растворах гидроксиды диссоциируют на ионы. Рассмотрим диссоциацию гидроксида натрия: , по такой же схеме диссоциируют и другие гидроксиды:

В водных растворах щелочи будут дисоциированы полностью, а гидроксиды бария, кальция, магния диссоциируют лишь в некоторой мере.

Для выражения меры диссоциации электролита служит понятие степени диссоциации [ 1, ст. 228 – 232 ]. Степенью диссоциации электролита называют отношение числа его молекул, распавшихся в данном растворе на ионы, к общему числу его молекул в растворе. Слабые электролиты в растворе дисоциированы частично и в растворе устанавливается динамическое равновесие между недиссоциированными молекулами и ионами. К этому равновесию можно применить законы химической кинетики и записать константу диссоциации:

Константы диссоциации позволяют вычислять РН раствора, сравнивать силы разных электролитов между собой. Значения констант диссоциации некоторых оснований приведены в таблице 2.


Таблица 2. Значения констант диссоциации оснований.

Основание

Кд

NH4OH

1,76×10-5

LiOH

6,8×10-1

Pb(OH)2

3,0×10-4, 3,0×10-8

 

Для выражения меры кислотности или щелочности среды в химии используют понятие водородного показателя.

Для сильных электролитов он равен: , где С – молярная концентрация основания. Для слабых оснований принята формула:  , где , тогда водородный показатель среды будет равен: .

Величина водородного показателя оснований, а также и других химических веществ в значительной мере зависит от температуры среды.


Глава 3. Основные способы получения оснований.

 

Основания используют для разнообразных целей ( см. Главу 5. ) в химии и промышленности. Поэтому нужно знать методы их получения. Все методы получения оснований разделены на промышленные и лабораторные, которые отличаются между собой лишь массой полученного продукта. В лабораторных условиях получают небольшие количества веществ, а в промышленных масштабах их получают сотнями тонн. Поэтому эти методы различаются между собой используемыми реагентами и оборудованием, температурами проведения реакций, выходом. Рассмотрим эти способы более детально.

 

3.1             Лабораторные способы получения оснований.

 

В лабораторних условиях основания получают в небольших количествах, не более чем сто – двести грамм. Иногда больше, в зависимости от потребности конкретной лаборатории в веществе. Но эти количества незначительны. В больших количествах основания в химико-технологических лабораториях могут добывать лишь в тех случаях, когда отрабатывают методику получения этого вещества для промышленности.

Рассмотрим основные способы получения гидроокисей в лаборатории.

В лаборатории для получения гидроокисей щелочных металлов применяют два способа. Первый и наиболее дорогой, это прямое взаимодействие щелочных металлов с водой, в результате которого получаются щелочи. Этот метод можно использовать для получения NaOH, KOH, LiOH, Ca(OH)2 .

Эти реакции достаточно опасны из–за использования активных металлов: натрия, калия, лития. Нельзя использовать в этих реакциях большие количества щелочных металлов, они могут вспыхнуть и даже взорваться.

В лабораторных условиях нашли свое применение и упрощенные промышленные способы получения гидроксида натрия. Почему именно гидроксида натрия ? потому что он наиболее широко используется из всех гидроксидов в химии и промышленности. Для его получения используют электролизный метод. Схема проточной электролизной установки наведена на рисунке 2.

1 – делительная воронка с раствором поваренной соли;

Информация о работе Характеристика оснований