Структура жидкости

Автор работы: Пользователь скрыл имя, 12 Апреля 2014 в 22:33, реферат

Описание работы

Жидкости по характеру взаимного расположения частиц, их динамике и взаимодействию ближе к кристаллическому, а не к газовому состоянию вещества. Полная энергия молекул жидкости равна сумме их кинетической и потенциальной энергий. Соотношение между их численными значениями зависит от температуры и давления. Являясь фазой, промежуточной между твердой и газообразной, жидкость, естественно, обнаруживает непрерывную гамму переходных свойств, примыкая в области высоких температур и больших удельных объемов к газам, а в области низких температур и малых удельных объемов - к твердым телам

Файлы: 1 файл

Структура жидкости.docx

— 2.75 Мб (Скачать файл)

V-частицы, которые осуществляют колебательные движения во временных положениях равновесия в течение времени τ в постоянном поле, создаваемом одними и теми же соседями (центр колебаний центральной молекулы усредняется вне влияния поля нарушений, появляющегося вследствие изменения расположений частиц при диффузионных движениях).

I'-частицы, находящиеся вне позиций, отвечающих временным положениям равновесия в конфигурациях глубоких минимумов, на поверхности потенциальной энергии системы.

V'-частицы, колебания которых осуществляются при наличии влияния быстропеременного поля локальных нарушений исходной постройки, создаваемого I'-частицами.

Кластерная структура жидкости

Кластеры, многоядерные комплексные соединения, в основе молекулярной структуры которых лежит объемный скелет (ячейка) из атомов металла, (обычно переходного), непосредственно связанных между собой. Ячейка окружена лигандами и играет роль центра атома. Как правило, она имеет, форму правильного полиэдра. Из возможных полиэдров чаще других реализуются те, стороны которых правильные треугольники.

Атомные и молекулярные кластеры. В простейшем случае эту систему описывают моделями, в которых частицы заменены шарами. При этом кластер удобно рассматривать как жидкую каплю, в которой частицы плотно упакованы. На рис. 1 показан пример такого кластера. С геометрической точки зрения такая модель кластера не представляет наиболее плотную упаковку шаров. Под плотностью упаковки обычно понимают долю пространства занимаемую шарами, которыми заполнено все пространство. Так, например, пентагональная упаковка шаров, изображенная на рис. 2, является более плотной, чем рассматриваемая нами модель (ее плотность составляет 72 процента).

 

    

 

Рис. 1.Шаровая модель кластера.  Рис. 2.Пентагональная упаковка шаров.

При конечной температуре такая упаковка, однако, обладала бы большей свободной энергией, чем рассматриваемая нами модель жидкой капли. Возможны и более плотные упаковки шаров, чем изображенная на рис. 2. Существует две основные плотнейшие упаковки — кубическая трехслойная и гексагональная двухслойная. Для плотнейшей упаковки коэффициент заполнения пространства равен 0.74048. Такие структуры действительно могут наблюдаться при очень низких температурах в кластерах из атомов благородных газов.

Современная технология позволяет получать кластеры, содержащие заданное число молекул данного типа. Методом масс - спектрометрии можно выбрать из пучка кластеры, содержащие фиксированное число молекул п. Так у плотно упакованного кластера из 20 атомов только один атом находится внутри объема. У кластеров из 100 атомов — не более 20.

Для малых кластеров n<100 необходимо детальное знание структуры кластера. В некоторых случаях, однако, рассматриваемая нами модель жидкой капли для описания свойств кластера имеет смысл, даже если число атомов в кластере очень мало. Это можно проиллюстрировать на примере кластеров, образующих изомеры — различные молекулярные конфигурации данного химического соединения. Каждый изомер локально устойчив, поскольку соответствует минимальной энергии, однако он может перейти в другую изомерную форму, если при нагревании получит достаточно энергии. Один из примеров таких «текучих» кластеров — тример натрия: три атома образуют равнобедренный треугольник, у которого угол, образованный двумя одинаковыми сторонами, не остается в каком-то одном положении, а непрерывно перемещается с одной вершины на другую. Поскольку на микроскопическом уровне их форма не фиксирована, текучие кластеры следует рассматривать в этом случае скорее как капли жидкости, а не как твердые частицы.

Кластеры из атомов инертных газов представляют собой простейший и наиболее изученный тип кластеров.

Атомы инертных газов с полностью заполненными электронными оболочками слабо взаимодействуют друг с другом посредством ван-дер-ваальсовых сил.

Характерная энергия связи, т.е. энергия, затрачиваемая на отрыв атома от кластера, очень мала и составляет примерно 10 К - 100 К. При описании таких кластеров с достаточно хорошей точностью применима модель твердых шаров. В настоящее время с помощью описанной выше технологии газопламенных кластерных пучков удается создавать кластеры из атомов инертных газов, содержащие от нескольких единиц до десятков тысяч атомов. Кластеры из атомов инертных газов представляют собой уникальный объект для изучения атом-атомных взаимодействий различных типов возбуждений в таких кластерах, электрон-атомного взаимодействия и т.д.

 

Французское слово gaz (газ) произошло от греческого слова «хаос», что означает «полный беспорядок», «неразбериха» (в древнегреческой мифологии хаос — зияющая бездна, наполненная туманом и мраком, якобы существовавшая до сотворения мира).

Термин «газ» был введен в начале XVII в. Я. Б. ван Гельмонтом. Действительно, модель молекулярного хаоса оказалась весьма плодотворной и сохранила свое значение для современных исследований.

Газ — это агрегатное состояние вещества, в котором составляющие его атомы и молекулы почти свободно и хаотически движутся в промежутках между столкновениями. Во время столкновения молекулы резко меняют скорость и направление своего движения. Время столкновения молекул намного меньше промежутка времени между двумя столкновениями.

Объем, занимаемый газом, значительно сильнее зависит от давления и температуры, чем объем жидкостей и твердых тел.

Газ можно сжать так, что его объем уменьшится в несколько раз. Это значит, что расстояние между молекулами I намного больше размеров самих молекул: I » d . На таких расстояниях молекулы очень слабо притягиваются друг к другу. По этой причине газы не имеют собственной формы и постоянного объема. Нельзя заполнить газом, например, половину бутылки или стакана.

В отличие от жидкостей и твердых тел газы не образуют свободной поверхности и заполняют весь доступный им объем.

Газообразное состояние — самое распространенное состояние вещества Вселенной (межзвездное вещество, туманности, звезды, атмосферы планет). По химическим свойствам газы и их смеси очень разнообразны — от малоактивных инертных газов до взрывчатых смесей.

Давление газа. Беспрерывно и хаотически двигаясь, молекулы газа сталкиваются не только друг с другом, но и со стенками сосуда, в котором находится газ. Молекул в газе много, потому и число их ударов очень велико. Например, число ударов молекул воздуха, находящегося в комнате, о поверхность площадью 1 см2 за 1 с, выражается двадцатитрехзначным числом. Хотя сила удара одной молекулы мала, но действие всех молекул на стенки сосуда значительно, оно и составляет давление газа.

Итак, давление газа на стенки сосуда и на помещенное в газ тело вызывается ударами молекул газа.

 

Структура жидкости существенно зависит от теплового движения составляющих ее частиц. Для выяснения этой зависимости большой интерес представляют одноатомные жидкости, имеющие наиболее простое строение. Для одноатомных жидкостей разработана теория, позволяющая на основании данных о рассеянии рентгеновских лучей устанавливать их структуру. Для определения ближней упорядоченности используются кривые радиального распределения атомов, вычисленные на основании кривых интенсивности рассеяния рентгеновских лучей. Такая кривая для жидкого свинца вблизи температуры плавления представлена на рис. 45 - При беспорядочном распределении кривая имела бы вид параболы 4тсг - р0, где р0 представляет среднюю атомную плотность жидкости. Но, как следует из приведенного примера, кривая имеет вид, отличный от параболы и только с ростом расстояния приближается к ней. [1]

Структура жидкостей характеризуется следующими особенностями: наличием ближнего порядка в распределении молекул, флуктуацией плотности, ориентацией молекул, их ассоциацией и сольватацией. [2]

Структура жидкости существенно зависит от теплового движения составляющих ее частиц. Для выяснения этой зависимости большой интерес представляют одноатомные жидкости, имеющие наиболее простое строение. Применительно к одноатомным жидкостям разработана теория, позволяющая на основании данных о рассеянии рентгеновских лучей устанавливать их структуру. Для определения ближней упорядоченности используются кривые радиального распределения атомов, вычисленные на основании кривых интенсивностей рассеяния рентгеновских лучей. При беспорядочном распределении кривая ( 1) имела бы вид параболы 4яг2р0, где р представляет среднюю атомную плотность жидкости. Но, как следует из приведенного примера, реальная кривая ( 2) имеет вид отличный от параболы и только с ростом расстояния приближается к ней. [3]

Структура жидкости напоминает структуру кристалла. Каждая молекула движется около одного из узлов кристаллической решетки) в ячейке, размеры которой ограничены соседними молекулами. Молекулы не могут переходить из одной ячейки в другую. [4]

Структура жидкости непрерывно меняется. Причина заключается в том, что большое число дырок в жидкостной упаковке частиц способствует их перемещению. Частица жидкости колеблется около мгновенного положения равновесия в течение некоторого времени, которое Френкель образно назвал временем оседлой жизни. Затем она перескакивает на место дырки и присоединяется к другому псевдоядру. Эти процессы происходят случайным образом, разные частицы переходят из одного состояния в другое в течение разных промежутков времени, но при огромном числе частиц можно ввести понятие о среднем времени оседлой жизни т как о промежутке времени, в течение которого не меняется структурная конфигурация псевдоядер, характеризующая ближний порядок. [5]

Структура жидкости непрерывно меняется. Причина заключается в том, что большое число дырок в жидкостной упаковке частиц способствует их перемещению. Частица жидкости колеблется около мгновенного положения равновесия в течение некоторого времени, которое Френкель образно назвал временем оседлой жизни. Затем она перескакивает на место дырки и присоединяется к другому псевдоядру. Эти процессы происходят случайным образом, разные частицы переходят из одного состояния в другое в течение разных промежутков времени, но при огромном числе частиц можно ввести понятие о среднем времени оседлой жизни т; как о промежутке времени, в течение которого не меняется структурная конфигурация псевдоядер, характеризующая ближний порядок. [6]

Структура жидкостей и паров. Не только кристаллические тела, но аморфные жидкости и пары также дают рентгенограммы и электронограммы в виде системы концентрических колец, правда, сильно размытых. В парах диффракция вызывается составными частями молекул и может дать указания на строение последних. Ввиду малой интенсивности картины замена рентгенографии электронографией - сулит в этой области особенные успехи. На рис. 6J, а изображена рентгенограмма паров СС14, полученная В и р л е м ( 1931) при экспозиции всего лишь в 0 1 сек. Из полученных до сих пор результатов отметим следующие: для СО2 и SO2 было найдено линейное расположение атомов ( например О-С - О) в согласии с отсутствием у них дипольных моментов ( § 233); бензол построен в виде плоского кольца, как и предполагали химики; СС14 имеет, также в согласии с стереохимическими данными, тетраэдрическое строение, все расстояния между атомами отвечают тем, которые вычисляются из молекулярных спектров. [7]

Структура жидкостей имеет много общего со структурой аморфных веществ. Имеются данные, указывающие на то, что молекулы в жидкостях находятся почти столь же близко друг к другу, как и в твердых веществах, однако в жидкостях не обнаруживается распространяющегося на столь большие расстояния порядка, какой наблюдается в кристаллических решетках. Возникающая неупорядоченность остальных атомов показывает, к каким далеко идущим последствиям приводят даже небольшие отклонения от полного совершенства плотноупакованной структуры. [8]

Структура жидкости очень чувствительна к изменениям температуры. При температурах, близких к Тп, строение жидкости приближается к твердому телу, так как содержит зачатки кристаллической структуры, и, наоборот, при температурах, близких к Гкип, упорядоченность в расположении частиц жидкости сводится к минимуму, и начинается интенсивное испарение. С точки зрения строения вещества жидкое состояние является самым переменчивым и многообразным, а потому и наименее изученным. [9]

Структура жидкостей характеризуется следующими особенностями: наличием ближнего порядка в распределении молекул, флуктуацией плотности, ориентацией молекул, их ассоциацией и сольватацией. [10]

Структура жидкости существенно зависит от теплового движения составляющих ее частиц. Для выяснения этой зависимости большой интерес представляют одноатомные жидкости, имеющие наиболее простое строение. Применительно к одноатомным жидкостям разработана теория, позволяющая на основании данных о рассеянии рентгеновских лучей устанавливать их структуру. Для определения ближней упорядоченности используются кривые радиального распределения атомов, вычисленные на основании кривых интенсивностей рассеяния рентгеновских лучей. [11]

Структура жидкости напоминает структуру кристалла. Каждая молекула движется около одного из узлов кристаллической решетки) в ячейке, размеры которой ограничены соседними молекулами. Молекулы не могут переходить из одной ячейки в другую. [12]

Структура жидкостей и растворов определяется как ближним порядком, характеризуемым коррелятивными функциями, так и флуктуациями, обусловленными тепловым движением молекул. В растворах, кроме флуктуации плотности и ориентации, существенную роль играют флуктуации концентрации, которые оказывают значительное влияние на макроскопические свойства растворов. [13]

Структура жидкостей по сравнению с другими агрегатными состояниями исследована меньше всего. Межмолекулярные силы взаимодействия между частицами жидкостей слишком велики, чтобы к этим частицам можно было бы применить кинетическую теорию газов, но слишком слабы для использования законов физики твердого тела. [14]

Структура жидкости очень чувствительна к изменениям температуры. [15]

Структура жидкости очень чувствительна к изменениям температуры. При температурах, близких к температуре плавления, строение жидкости приближается к строению твердого тела, так как содержит зачатки кристаллической структуры, и наоборот, при температурах, близких к температуре кипения, упорядоченность в расположении частиц жидкости сводится к минимуму, и начинается интенсивное испарение. С точки зрения строения вещества жидкое состояние является самым переменчивым и многообразным, а поэтому и наименее изученным. [1]

Структура жидкости непрерывно меняется. Причина заключается в том, что большое число дырок в жидкостной упаковке частиц способствует их перемещению. [2]

Влияние плотности яя радиальную функцию распределения для системы, взаимодействия частиц в которой описываются потенциалом Леннард-Джонса. Сплошная крипа я.


Структуру жидкостей изучают с помощью методов рентгеновского структурного анализа, электронографии, и нейтронографии. [3]

Информация о работе Структура жидкости