Экстремумы функций

Автор работы: Пользователь скрыл имя, 11 Января 2014 в 11:16, дипломная работа

Описание работы

Цель дипломного проекта – рассмотрение и описание функций одной и многих переменных, а также в рассмотрении методов, используемых при этом.
Данный дипломный проект рассчитан на абитуриентов высших учебных заведений. На вопрос - можно ли ввести рассмотрение этой темы в старших классах школы – ответ будет дан в последней главе дипломного проекта, после рассмотрения задач и возможных методов их решения. В дипломном проекте с большей логической стройностью и без повторений приведено изложение темы – функции одной и многих переменных, сообщены сведения из математического анализа, необходимые при изучении физики и ряда инженерных дисциплин.

Содержание работы

1. Введение………………………………………………2
2. Историческая справка………………………………..3
3. Экстремумы функций одной переменной.
3.1. Необходимое условие……………………………5
3.2.1. Достаточное условие. Первый признак………7
3.2.2. Достаточное условие. Второй признак……….8
3.3. Использование высших производных………….10
4. Экстремумы функций трех переменных.
4.1. Необходимое условие…………………………...11
4.2. Достаточное условие…………………………….12
5. Экстремумы функций многих переменных.
5.1. Необходимое условие……………………………17
5.2. Достаточное условие…………………………….19
5.3. Метод вычисления критериев Сильвестера……22
5.4. Замечание об экстремумах на множествах…….31
6. Условный экстремум.
6.1. Постановка вопроса……………………………..33
6.2. Понятие условного экстремума…………………34
6.3. Метод множителей Лагранжа для нахождения точек условного экстремума…………………………………..36
6.4. Стационарные точки функции Лагранжа………40
6.5. Достаточное условие…………………………….46
7. Заключение……………………………………………51
8. Библиография..………………………………………..53

Файлы: 1 файл

Экстремумы функций.doc

— 287.50 Кб (Скачать файл)

0 f0+   1f1+   2f2+…+    mfm=0                                (6.8)

 

Следствие : если в точке x(0) условного экстремума функции f0 относительно уравнений связи (6.3) градиенты           f1,  f2,…,   fm линейно независимы , то ранг матрицы Якоби

                                               fj            j=1,2,…,m

                                                                       xi           i=1,2,…,n

равен m, то существуют такие    1,…,   m , что в этой точке

                                           f0+        i  fj=0                           (6.9)

т.е. f0 является линейной комбинацией градиентов    f1,   f2,…,   fm.

 

В координатной форме  это условие имеет вид : для  любого i=1,2,…,n в точке x(0)

                  f0              fi

                  xi                      xi                                            (6.10)

функция

                          F(x)==f0(x)+         jfj(x)                           (6.11)

 где числа   1,…, m удовлетворяют условию(6.10), называется функцией Лагранжа рассматриваемой задачи , а сами числа       1,…,   m – множителями Лагранжа.

Условие (6.10) означает , что  если x(0) является точкой условного экстремума функции f0 относительно уравнений связи (6.3) , то она является стационарной точкой для функции Лагранжа , т.е.

                        F(x(0))

                          xi                             i=1,2,…,n                    (6.12)

Прежде , чем доказать теорему , разъясним ее смысл и  покажем , как ее использовать для  нахождения точек условного экстремума. Прежде всего обратим внимание на то , что у функции вида (6.11) при произвольных числах      1,…,   m, каждая точка ее условного экстремума является и точкой условного экстремума исходной функции f0, и наоборот.Мы выбираем такие значения    1,…,   m, чтобы выполнялись условия (6.10) , т.е. чтобы данная точка условного экстремума оказалась и стационарной точкой фуцнкции (6.9). 

Для отыскания точек  условного экстремума следует рассмотреть  систему n+m уравнений (6.3) и (6.8) относительно неизвестных x1(0),x2(0),…,xn(0) 1,…, m и решить ее (если это возможно) , найдя x1(0),x2(0),…,xn(0) и по возможности исключив  1,…, m.Сформулированная теорема утверждает , что все точки условного экстремума будут находится среди найденных таким образом точек (x1(0),x2(0),…,xn(0)).Вопрос о том , какие же из них фактически будут точками условного экстремума , требует дополнительного исследования , об этом будет говориться в п.6.5

Доказательство  теоремы . Докажем утверждение равносильное теореме : если в точке x(0)=(x1(0),x2(0),…,xn(0)), удовлетворяющей уравнениям связи

          fk(x(0))=0   k=1,2,…,n                              (6.13)

градиенты   f0,  f1,  f2,…,  fm линейно независимы , то x(0) не является точкой условного экстремума.

Итак , пусть f0,  f1,  f2,…,  fm линейно независимы и , следовательно , ранг матрицы Якоби   fj/  xi j=1,2,…,m,i=1,2,…,n  равен m+1.Тогда в матрице существует минор порядка m+1 не равный нулю.Для определенности будем считать , что он образован первыми m+1 столбцами , т.е.

                 (f0,  f1,  f2,…,  fm)

                     (x1,x2,…,xm+1)    x=x(0)                    (6.14)

Множество G–открыто , а  поэтому существует такое  00>0, что при всех 0 0<0<00 , куб

Q n={x: xi-xi(0) <0,i=1,2,…,n}               

лежит в G и , следовательно, на нем определены все функции f0,  f1,  f2,…,  fm.

Зафиксируем xm+2= x(0)m+2,…, xn=xn(0) и введем обозначения

x*=(x1,x2,…,xm+1)

Q m+1={x*: xi-xi(0) <0,i=1,2,…,m+1}               

Очевидно , функции fj(x1,x2,…,xm+1,x(0)m+2,…,xn(0)) j=1,2,…,m определены и непрерывно дифференцируемы всюду в Q m+1.Рассмотрим отображение Ф : Q m+1  Rm+1, задаваемое формулами

   y1= f0(x1,x2,…,xm+1,x(0)m+2,…,xn(0))

   y2= f1(x1,x2,…,xm+1,x(0)m+2,…,xn(0))

   ……………………………………                       (6.15)

  ym+1= fm(x1,x2,…,xm+1,x(0)m+2,…,xn(0))

В силу (6.15) для точки x*(0)=(x1(0),x2(0),…,xn(0))   имеем

  (y1, y2,…, ym+1)                 (f0,  f1,  f2,…,  fm)

   (x1,x2,…,xm+1) x*= x*(0)         (x1,x2,…,xm+1)  x=x(0)                                                                                         

а в силу (6.13) Ф(x*(0))=(f0(x(0),0,…,0) .Поэтому (в силу теремы о локальной обратимости непрерывно дифференцируемого отображения в точке , в которой его якобиан не равен нулю , существует такое число   >0 , что на окрестности

V={y=(y1, y2,…, ym+1) : y1- f0(x(0))  <   ,  yj<   ,j=2,3,…,m} 

(рис.5) определено обратное  к Ф отображение и , следовательно  , в любую точку этой окрестности  отображается какая-то точка из Q m+1.

 

 

 

В частности , поскольку  при любом n,0<n<  ,имеет место включение (f0(x(0))+n,0,…,0), то в кубе найдутся точки x`*=(x`1,x`2,…,x`m+1) и x``*=(x``1,x``2,…,x``m+1), отображающиеся при отображении Ф в указанные точки окрестностиV`.

Ф(x`*)=(f0(x(0))+n,0,…,0)

Ф(x``*)=(f0(x(0))-n,0,…,0)

Если положим для  краткости     x`=(x`1,x`2,…,x`m+1,x(0)m+2,…,xn(0)) и  x``=(x``1,x``2,…,x``m+1,x(0)m+2,…,xn(0)), то в координатной записи (6.15) получим

f0(x`)= f0(x(0))+n> f(x(0)) , fk(x`)=0, k=1,2,…,n , x`  Q n

 и

f0(x``)= f0(x(0))-n> f(x(0)) , fk(x``)=0, k=1,2,…,n , x``  Q n

В силу произвольности  0>0,0<0<0 , это и означает , что x(0) не является точкой условного экстремума.

                                                      ч.т.д.

Доказательство  следствея. Если векторы    f1,    f2,…,   fm линейно независимы , то в равенстве (6.8) имеем       0=0 так как в случае   0=0  указанные векторы в силу (6.8) оказались бы линейно зависимыми .Разделив обе части на  0  получим равенство вида (6.9).

                                                           ч.т.д.

 

Пример №5.     

 

 Пусть требуется  найти экстремум функции u=xyzt при условии x+y+z+t=4c; область изменения переменных определяетссся неравенствовами x>0, y>0, t>0, z>0.

Применяя к этой задаче метод Лагранжа, введем вспомогательную функцию

Ф=xyzt+   (x+y+z+t)

И составим условия

Фx =yzt+   =0

Фy =xzt+   =0

Фz =yxt+   =0

Фt =yzx+   =0

откуда

yzt=xzt=xyt=xyz

так что

x=y=z=t=c.

 

6.4.Стационарные  точки функции Лагранжа.

 

В этом пункте будет дано описаие стационарных точек функции Лагранжа (6.10) посредством фукции 0(xm+1,xm+2,…,xn), введенной в пункте 6.2 (см.(6.8)).Предварительно докажем одну простую лемму из линейной алгебры.

Пусть задана система  линейных однородных уравнений

ai1x1+…+ ainxn=0  i=1,2,…,m                        (6.16)

и еще одно линейное однродное  уравнение

b1x1+…+ bnxn=0                                            (6.17)

Cистему уравнений  , полученную присоединением к  системе (6.16) уравнения (6.17), будем  называть расширенной системой (6.16)-(6.17).

Лемма: Для того чтобы расширенная система (6.16)-(6.17) была равносильна основной системе (6.16) необходимо и достаточно , чтобы уравнение (6.17) являлось линейной комбинацией уравнений системы (6.16).

Следствие:Для того чтобы уравнение (6.17) было линейной комбинацией уранений (6.16) или , что то же самое , чтобы вектор

b==(b1,…,bn)                                                (6.18)

был линейной комбинацией  векторов

            ai ==(ai1,…,ain)   i=1,2,…,m                          (6.19)

необходимо и достаточно , чтобы каждое решение системы (6.16) являлось решением уравнения (6.17).

Доказательство  леммы . Пусть ранг матрицы (aij) коэффициентов системы (6.16) равен m0 . Очевидно , что m0<m . Если m0<m, то уравнений системы (6.16) являются линейными комбинациями остальных. Отбросив те m-m0 линейных уравнений , которые являются линейными комбинациями оставшихся , получили систему из m0 линейно независимых уравнений . равносильную системе (6.16), причем уравнение (6.17) является линейной комбинацией уравнений системы (6.16) тогда и только тогда , когда оно является линейной комбинацией указанной системы из оставшихся m0 уравнений. Поэтому будем с самого начала считать , что , m0=m т.е. что ранг матрицы (aij) коэффициентов системы (6.16) равен m– числу уравнений этой системы.

Пусть система (6.16) и (6.16)-(6.17) равносильны. Это означает, что пространства их решений совпадают.Поскольку  все уравнения основной системы (6.16) входят в расширенную систему (6.16)-(6.17), то каждое решение расширенной  системы является и решением основной системы , т.е. пространство решений расширенной системы содержится в пространстве решений основной системы. Следовательно , слвпадение этих пространств равносильно равенству их размерностей.

Размерность s пространства решений системы линейных днородных уравнений равны , как известно , числу неизвестных n этой системы , из которого вычтем ранг r матрицы коэффициентов системы : s=n-r.Отсюда следует , что равносильность систем (6.16) и (6.16)-(6.17) означает равенство рангов их матриц.Ранг матрицы коэффициентов системы (6.16) по условию равен m , т.е. векторы (6.19) линейно независимы.

Ранг матрицы коэффициентов  расширенной системы (6.16)-(6.17) согласно сказанному в наших условиях также  равен m.Поэтому векторы (см.(6.18) и (6.19))

b, a1,…, am                                              (6.20)

линейно зависимы.А это  означает , что b является линейной комбинацией  векторов a1,…, am.

В самом деле , линейная зависимость векторов (6.20) означает , что существуют такие числа      0,   1,…,   m, не все равные нулю . что

0b+    1a1+…+    mam=0                                     (6.21)

Здесь заведамо 0=0, так как в противном случае векторы a1,…, am оказались бы линейно зависимыми. Поделив равенство (6.21) на  0, получим , что b является линейной комбинацией векторов a1,…, am .

Обратно, если b является линейной комбинацией векторов (6.19), то в системах векторов (6.19) и (6.20) имеется  в точности по m линейно независимых  векторов , т.е. ранги матриц коэффициентов  систем уравнений (6.16) и (6.16)-(6.17) равны.

Итак, условие , что вектор b является линейной комбинацией векторов (6.19) :

  1a1+…+    mam=b

эквивалентно равенству  рангов матриц коэффициентов рассматриваемых  основной и расширенной системв  уравнений, следовательно, эквивалентно их равносильности.

                                                                          ч.т.д.

Доказательство  следствия сразу следует из леммы, поскольку системы (6.16) и (6.16)-(6.17) очевидно равносильны тогда и только тогда , когда каждое решение системы (6.16) является и решением уравнения (6.17) – остальные уравнения систем просто совпадают.

                                                                              ч.т.д. 

   Замечание  1 : доказанная лемма и ее следствие имеют простую геометрическую интерпритацию в n–мерном евклидовом векторном пространстве Rn, т.е. в n–мерном пространстве со скалярным произведением.Используя обозначение скалярного произведения, систему (6.16) можно записать в виде

(ai,x)=0  i=1,2,…,m                                                (6.22)

а уравнение (6.17) в виде

(b,x)=0                                                                    (6.23)

где векторы a1,…, am и определены в (6.18) и (6.19) , а x=(x1,x2,…,xm+1)

Множество всевозможных линейных комбинаций векторов a1,…, am образуют подпространство пространства Rn и называется подпространством, натянутым на эти векторы.Обозначим его через Z=( a1,…, am).

Множество решений системы (6.22) состоит из всех векторов х, ортоганальных  подпространству Z=( a1,…, am) Обозначим это множество решений через Т.Оно также является подпространством пространства Rn.

Подпространства L==Z(a1,…, am) и Т называются ортоганальными дополнениями друг друга в пространстве Rn.

Поскольку L=Z( a1,…, am), то представимость вектора b в виде линейной комбинации векторов a1,…, am равносильна его принадлежности подпространству L пространства Rn:b L.Это условие в свою очередь, равносильно ортоганальности вектора b подпространству Т:b _Т, которая означает, что для всех x Т имеет место равенство (b,x)=0,т.е.что любое реение х системы (6.22) является решением уравнения (6.23).Это и является утверждением следствия леммы.

Замечание 2 : напомним метод, которым можно получить все решения однородной системы линейных уравнений.Пусть система (6.16) состоит из линейно независимых уравнений.Тогда ранг матрицы его коэффициентов равен m.Это означает , что существует минор этой матрицы порядка m, не равный нулю.Пусть для определенности

                                            a11… a1m

Информация о работе Экстремумы функций