Улучшение эксплуатационно-технических показателей легкового автомобиля малого класса ВАЗ-2110

Автор работы: Пользователь скрыл имя, 28 Апреля 2014 в 21:10, дипломная работа

Описание работы

ХХ век — век атома, электроники, компьютеров или автомобилей? Спор по этому вопросу еще не закончен. А пока лишь приведем некоторые факты из прошлого и настоящего автомобилей: автомобильное «население» Земли в ХХ веке увеличилось в 10 тысяч раз, а человеческое — лишь втрое; автомобили — самая мощная энергетическая база человечества, суммарная мощность их двигателей достигает 25 млрд. кВт, а вырабатываемая ими энергия ежегодно составляет около 30 тысяч млрд. Квт.ч; мировая автомобильная промышленность выпускает ежегодно до 40 млн. машин; около 80% перевозок грузов и пассажиров осуществляется автомобильным транспортом.

Содержание работы

Введение………………………………………………………………………...2
1. Исследовательский раздел……………………………………………...3
1.1. Анализ опыта эксплуатации легковых автомобилей………………...3
1.2. Обоснование мероприятий по системе управления
Автомобилем……………………...……………………………………………10
2. Конструкторский раздел.…………………………………..……………16
2.1. Тягово-динамический расчёт………………………...……………….. 16
2.2. Разработка конструкций коробки передач…………………………...32
2.3. Разработка структуры системы управления автомобилем……….44
3. Технологический раздел………………………………………………..51
3.1. Разработка технологического процесса изготовления
проектируемого узла.
4. Раздел: «Безопасность жизнедеятельности……………………….61
4.1. Анализ опасных, вредных факторов и возможных чрезвычайных
ситуаций, возникающих при эксплуатации легкового автомобиля…...61
4.2. Разработка мер безопасности.
4.3. Анализ факторов оказывающих вредное воздействие на окружающую среду. Разработка мер защиты.
5. Организационно-экономический раздел.
5.1. Нормирование технологического процесса изготовления детали автомобиля.
5.2. Определение целесообразности организации поточной линии.
5.3. Планировка цеха автоматизированного производства.

Файлы: 1 файл

улучшение эксплуатационно-технических показателей легкового автомобиля малого класса ВАЗ-2110.doc

— 899.50 Кб (Скачать файл)

На двигателе применена система распределенного впрыска топлива (на каждый цилиндр - отдельная форсунка). Форсунки включаются попарно (для 1-4 и 2-3 цилиндров) при подходе поршней к верхней мертвой точке (ВМТ). На двигателе установлена система распределенного фазированного впрыска: топливо подается форсунками поочередно в соответствии с порядком работы цилиндров, что снижает токсичность отработавших газов. В этом случае на головке блока цилиндров устанавливается датчик фаз, а на шкиве распределительного вала -диск с прорезью в ободе.

 

Двигателей комплектуется системой впрыска с обратной связью (кислородным датчиком) и нейтрализатором в системе выпуска отработавших газов. Эта система не требует регулировки и обслуживания (при превышении норм токсичности отработавших газов вышедшие из строя компоненты заменяют). Датчик кислорода (лямбда-зонд). Установлен в приемной трубе системы выпуска отработавших газов. Кислород, содержащийся в отработавших газах, создает разность потенциалов на выходе датчика, изменяющуюся приблизительно от 0, 1 В (много кислорода - бедная смесь) до 0, 9 В (мало кислорода - богатая смесь). По сигналу от датчика кислорода контроллер корректирует подачу топлива форсунками так, чтобы состав отработавших газов был оптимальным для эффективной работы нейтрализатора (напряжение кислородного датчика - около 0, 5 В). Для нормальный работы датчик кислорода должен иметь температуру не ниже 360°С, поэтому для быстрого прогрева после запуска двигателя в него встроен нагревательный элемент. Контроллер постоянно выдает в цепь датчика кислорода стабилизированное опорное напряжение 0, 45±0, 10 В. Пока датчик не прогрет, опорное напряжение остается неизменным. При этом контроллер управляет системой впрыска, не учитывая напряжение на датчике. Как только датчик прогреется, он начинает изменять опорное напряжение. Тогда контроллер отключает нагрев датчика и начинает учитывать сигнал датчика кислорода.

 

СО-потенциометр. Установлен в салоне на левом щитке облицовки тоннеля пола и представляет собой резистивный делитель напряжения, с включенными последовательно резистором и потенциометром между входным контактом контроллера и заземлением. СОП устанавливается в моторном отсеке на стенке воздухопритока (см. Фото-1) и служит для регулировки содержания окиси углерода (СО) в выхлопных газах. Чем выше напряжение на сигнальном контакте СОП, тем ниже уровень СО в выхлопных газах. Контроллер фиксирует ошибку СПО, если управляющее напряжениевыходит за пределы заданного значения (1-5В.) и сохраняет в ОЗУ соответственно "27" или "28" код ошибки СО-потенциометра, который может быть считан в режиме диагностики. При наличии данных ошибок зажигается лампа "CHECK ENGINE" и чаще всего указывает на обрыв цепи СОП. В этом случае контроллер не учитывает сигнал СОП и переходит в режим управления двигателем по усредненным значениям. Симптомами неисправности данной цепи могут служить повышение расхода топлива, снижение динамики автомобиля и неустойчивая работа двигателя на холостом ходу.

.

Датчик скорости автомобиля. Установлен на коробке передач, на приводе спидометра. Принцип его действия основан на эффекте Холла. Датчик выдает на контроллер прямоугольные импульсы напряжения (нижний уровень - не более 1 В, верхний - не менее 5 В) с частотой, пропорциональной скорости вращения ведущих колес. 6 импульсов датчика соответствуют 1 м пути автомобиля. Контроллер определяет скорость автомобиля по частоте импульсов.

 

Система зажигания. Состоит из модуля зажигания, высоковольтных проводов и свечей зажигания. При эксплуатации она не требует обслуживания и регулирования. Угол опережения зажигания рассчитывается контроллером в зависимости от частоты вращения коленчатого вала, нагрузки на двигатель (массовый расход воздуха и положение дроссельной заслонки), температуры охлаждающей жидкости и наличия детонации. Модуль зажигания. Включает в себя два управляющих электронных блока и два высоковольтных трансформатора (катушки зажигания). К выводам высоковольтных обмоток подключены свечные провода: к одной обмотке - 1-го и 4-го цилиндров, к другой - 2-го и 3-го. Таким образом, искра одновременно проскакивает в двух цилиндрах (1-4 или 2-3) - в одном во время такта сжатия (рабочая искра), в другом - во время выпуска (холостая). Модуль зажигания - неразборный, при выходе из строя его заменяют. Свечи зажигания. А17ДВРМ или их аналоги, с помехоподавительным резистором сопротивлением 4-10 кОм и медном сердечником. Зазор между электродами- 1, 00 - 1, 13 мм, Размер шестигранника - 21 мм. На двигателе устанавливаются свечи с шестигранником 16 мм, они имеют обозначение АУ17ДВРМ.

    Предохранители и реле системы впрыска. Три предохранителя (на 15 А каждый) и три реле системы впрыска (главное, электробензонасоса и электровентилятора системы охлаждения) находятся под консолью панели приборов рядом с контроллером. Один предохранитель защищает цепь питания системы впрыска (вход неотключаемого напряжения), второй - контакты главного реле, третий - контакты реле электробензонасоса. Кроме предохранителей предусмотрена плавкая вставка на конце красного провода, присоединяемого к клемме "+" аккумуляторной батареи, выполненная в виде отрезка черного провода сечением 1 мм2 (сечение основного провода - 6 мм2). Силовые контакты главного реле замыкаются при включении зажигания. После этого "плюс" подается к обмоткам реле электробензонасоса и электровентилятора системы охлаждения (включение реле - по команде контроллера), клапану продувки адсорбера и форсункам (их включение - также по команде контроллера), датчикам системы впрыска. Питание к контактам реле электровентилятора подается через предохранитель в монтажном блоке.

 

Работа системы впрыска. Состав смеси регулируется длительностью управляющего импульса, подаваемого на форсунки (чем длиннее импульс, тем больше подача топлива). Топливо может подаваться "синхронно" (в зависимости от положения коленчатого вала) и "асинхронно" (независимо от положения коленчатого вала). Последний режим используется при пуске двигателя. Если при прокручивании двигателя стартером дроссельная заслонка открыта более чем на 75%, контроллер воспринимает ситуацию как режим продувки цилиндров (так поступают, если есть подозрение, что свечи залиты бензином) и не выдает импульсы на форсунки, перекрывая подачу топлива. Если в ходе продувки двигатель начнет работать и его обороты достигнут 400 мин-1, контроллер включит подачу топлива. При торможении двигателем контроллер обедняет смесь для снижения токсичности отработавших газов, а на некоторых режимах и вовсе отключает подачу топлива. Подача топлива отключается и при выключении зажигания, что предотвращает самовоспламенение смеси в цилиндрах двигателя (дизелинг). При падении напряжения питания контроллер увеличивает время накопления энергии в катушках зажигания (для надежного поджигания горючей смеси) и длительность импульса впрыска (для компенсации увеличения времени открытия форсунки). При увеличении напряжения питания время накопления энергии в катушках зажигания и длительность подаваемого на форсунки импульса уменьшаются. Контроллер управляет включением электровентилятора системы охлаждения (через реле) в зависимости от температуры двигателя, частоты вращения коленчатого вала и работы кондиционера (если он установлен).

 

Электровентилятор включается, если температура охлаждающей жидкости превысит 104°С или включен кондиционер. Электровентилятор выключается при падении температуры охлаждающей жидкости ниже 101°С, выключении кондиционера, остановке двигателя (с задержкой в несколько секунд). Лампа "CHECK ENGINE". В комбинации приборов информирует водителя о неисправностях в системе управления двигателем. Она также выдает коды неисправностей при включении зажигания, если замкнуты соответствующие контакты диагностического разъема, расположенного слева под панелью приборов. На выпускаемых в настоящее время контроллерах "Январь" и Bosch (применяемых для данного двигателя) самодиагностика не предусмотрена, а разъем служит для подключения диагностического прибора типа DST-2. Если система исправна, то при включении зажигания лампа "CHECK ENGINE" загорается, но гаснет сразу после пуска двигателя. Если лампа горит при работающем двигателе, в системе управления двигателем имеются неисправности, условные коды которых контроллер записывает в память (ОЗУ). Даже если лампа затем погасла, эти коды остаются в памяти и могут быть считаны с помощью диагностического прибора или в режиме самодиагностики (если он предусмотрен). Однако отказ некоторых компонентов системы впрыска (бензонасос и его цепи, модуль зажигания, свечи) не определяется контроллером и, соответственно, лампа "CHECK ENGINE" при этом не загорается.

 

Так же возможен вариант двигателя без кислородного датчика и нейтрализатора. В этом случае токсичность отработавших газов регулируют СО-потенциометром с применением газоанализатора.

 

Контроллер системы впрыска. Представляет собой миникомпьютер специального назначения. Он содержит три вида памяти - оперативное запоминающее устройство (ОЗУ), программируемое постоянное запоминающее устройство (ППЗУ) и электрически программируемое запоминающее устройство (ЭПЗУ). ОЗУ используется компьютером для хранения текущей информации о работе двигателя и ее обработки. Также в ОЗУ записываются коды возникающих неисправностей. Эта память энергозависима, т.е. при отключении питания ее содержимое стирается. ППЗУ содержит собственно программу (алгоритм) работы компьютера и калибровочные данные (настройки). Таким образом, ППЗУ определяет важнейшие параметры работы двигателя: характер изменения момента и мощности, расход топлива и т.п. ППЗУ энергонезависимо, т.е. его содержимое не изменяется при отключении питания. ППЗУ устанавливается в разъем на плате контроллера и может быть заменено (при выходе из строя контроллера исправное ППЗУ можно переставить на новый контроллер). В ЭПЗУ записываются коды иммобилайзера при "обучении" ключей (см. сервисную книжку автомобиля). Эта память также энергонезависима. Датчики системы впрыска. Выдают контроллеру информацию о параметрах работы двигателя (кроме датчика скорости автомобиля), на основании которых он рассчитывает момент, длительность и порядок открытия форсунок, момент и порядок искрообразования. При выходе из строя отдельных датчиков контроллер переходит на обходные алгоритмы работы; при этом могут ухудшиться некоторые параметры двигателя (мощность, приемистость, экономичность), но движение с такими неисправностями возможно. Единственным исключением является датчик положения коленчатого вала, при его неисправности двигатель работать не может.

 


    Датчик положения коленчатого вала. Установлен на крышке масляного насоса. Он выдает контроллеру информацию об угловом положении коленчатого вала и моменте прохождения поршнями 1-го и 4-го цилиндров ВМТ. Датчик - индуктивного типа, реагирует на прохождение зубьев задающего диска на шкиве привода генератора вблизи своего сердечника. Зубья расположены на диске с интервалом 6°. Для синхронизации с ВМТ два зуба из 60 срезаны, образуя впадину       (рис 1.). При прохождении впадины мимо датчика в нем генерируется так называемый "опорный" импульс синхронизации. Установочный зазор между сердечником и зубьями должен находиться в пределах 1±0, 2 мм. Датчик фаз. Установлен на головке блока цилиндров. Принцип его действия основан на эффекте Холла. На шкиве впускного распределительного вала находится диск с прорезью в ободе. Обод проходит через паз в датчике. Когда прорезь диска попадает в паз датчика, он выдает на контроллер отрицательный импульс, соответствующий положению поршня 1-го цилиндра в ВМТ в конце такта сжатия. При выходе из строя датчика фаз контроллер переходит в режим распределенного (нефазированного) впрыска топлива. Датчик температуры охлаждающей жидкости. Ввернут в выпускной патрубок на головке блока цилиндров. Он представляет собой терморезистор. Контроллер подает на датчик стабилизированное напряжение +5 В через резистор и по падению напряжения рассчитывает состав смеси. Датчик положения дроссельной заслонки (ДПДЗ). Установлен на оси дроссельной заслонки и представляет собой потенциометр. На один конец его обмотки подается стабилизированное напряжение +5 В, а другой соединен с "массой". С третьего вывода потенциометра (ползунка) снимается сигнал для контроллера.

 

При выходе из строя ДПДЗ его функции берет на себя датчик массового расхода воздуха. При этом обороты холостого хода не опускаются ниже 1500 мин-1. Датчик массового расхода воздуха. Расположен между воздушным фильтром и впускным шлангом. Он состоит из двух датчиков (рабочего и контрольного) и нагревательного резистора. Проходящий воздух охлаждает один из датчиков, а электронный модуль преобразует разность температур датчиков в выходной сигнал для контроллера. В разных вариантах систем впрыска применяются датчики двух типов - с частотным или амплитудным выходным сигналом. В первом случае в зависимости от расхода воздуха меняется частота, во втором случае - напряжение. При выходе из строя датчика массового расхода воздуха его функции берет на себя ДПДЗ. Датчик детонации. Одноконтактный датчик детонации ввернут в верхнюю часть блока цилиндров, двухконтактный датчик крепится на шпильке. Действие датчика основано на пьезоэффекте: при сжатии пьезоэлектрической пластинки на ее концах возникает разность потенциалов. При детонации в датчике образуются импульсы напряжения, по которым контроллер регулирует опережение зажигания.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Технологический  раздел.

 

3.1 Разработка  технологического процесса изготовления  проектируемого узла.

 

Цель технологического раздела заключается в разработке процесса сборки коробки передач, а так же выбора метода достижения требуемой точности при сборке коробки передач, в частности обеспечения зазора между делительными окружностями зубчатого колеса.

 

ПРОИЗВОДСТВЕННАЯ ПРОГРАММА

 

Определение месячной программы выпуска Т:

                                                           

 

         где : N − количество изделий выпускаемых за конкретный период времени (за год),                    

                      масштаб  выпуска, шт.

 

Определение дневной программы выпуска Тдн:                 

                                                                                   

Определение такта выпуска t*:

                                                

 

         где : Ф − годовой фонд времени  в часах при двухсменной работе  ≈ 4015 часов;

                 η  − коэффициент использования рабочего времени равный 0,85;

               

Вывод:  производство является крупно-серийным

 

 

3.1.1 РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА  СБОРКИ КОРОБКИ ПЕРЕДАЧ

 

3.1.2. Служебное назначение детали.

    Коробка передач предназначена для изменения крутящего момента, развиваемого двигателем с целью получения различных тяговых усилий на ведущих колесах

3.1.3. Технические требования на изделие.

 

1. При сборке плоскость  разъема покрыть герметиком 25ВС  ТУ 6.01-2-370-74.

2. Уплотнительные прокладки и шпильки ставить на герметизаторах

3. Залить масло трансмиссионное  ТАД-17И ГОСТ 23632-79 до уровня контрольного  отверстия.

4. Гайки М16х1.5 поз.13 затянуть  с моментом 30...35 Нм.

 

 

3.1.4. Разработка технологического процесса сборки и регулировки коробки передач.

 

Долговечность и бесшумность работы коробки передач зависит от правильной и аккуратной сборки редуктора.

 

 

Сборку коробки передач проводите в следующей последовательности, учитывая некоторые особенности данной КПП.

 

         1. Прежде чем крепить шарнир тяги и рычаг на штоке выбора передач, обезжирьте резьбовые отверстия в корпусе шарнира и в ступице рычага, а также винты крепления, нанесите на резьбу винтов специальный клей ТБ-1324 и затяните их.

Информация о работе Улучшение эксплуатационно-технических показателей легкового автомобиля малого класса ВАЗ-2110