Тюнинг внедорожников

Автор работы: Пользователь скрыл имя, 14 Мая 2013 в 21:35, курсовая работа

Описание работы

Цель данной дипломной работы – всестороннее изучение понятия «тюнинг», и разработка учебных пособий по тюнингу и дооборудованию легковых автомобилей и внедорожников.
Объект исследования - тюнинг и дооборудование автомобилей.
Предмет исследования – тюнинг и дооборудование легковых автомобилей и внедорожников.

Содержание работы

Введение
Глава 1. Тюнинг легковых автомобилей
1.1 Понятие и виды тюнинга
1.1.1 Тюнинг двигателя
1.1.2 Тюнинг подвески
1.1.3 Тюнинг тормозной системы
1.1.4 Тюнинг выхлопной системы
1.1.5 Внешний тюнинг
1.1.6 Вес-тюнинг
1.2 Дизайн и требования к дооборудованию автомобилей
1.2.1 Колесные диски
1.2.2 Материал для дисков
1.2.3 Размеры «обод — шина»
1.2.4 Размеры «колесо — автомобиль»
1.2.5 Маркировка
1.2.6 Ксеноновый свет
1.2.7 "Музыкальный" ток
1.2.8 Люк на крыше
1.2.9 Настроенный выхлоп
1.2.10 Увеличение мощности
1.2.11 Шины
1.2.12 Аэрография
1.3 Структура содержания учебного пособия «Тюнинг и дооборудование легковых автомобилей
Глава 2. Тюнинг внедорожников
2.1 Виды тюнинга внедорожников
2.1.1 Блокировки для джипа
2.1.2 Подкрылки
2.1.3 Пластиковая обвеска
2.1.4 Аудиосистемы
2.1.5 Мир кожи
2.1.6 Тонированные стекла
2.2 Структура содержания учебного пособия «Тюнинг и дооборудование внедорожников»
Список используемой литературы

Файлы: 1 файл

примр диплома (2).docx

— 598.61 Кб (Скачать файл)

Следующий шаг — выбор  модели. Естественно, что в «пятерку»  или «шестерку» вряд ли кто-нибудь затеет ставить Aero Top 2 за 800 у.е. Проблема выбора в другом. Подъемные люки, например, «поднимают» воздушный поток над крышей, почти не меняя аэродинамических характеристик автомобиля. Более «крутые» сдвижные люки как бы помогают воздушному потоку «забраться» внутрь машины, где он создает завихрения. С другой стороны, подъемные люки не совместимы с багажниками на крыше, сдвижные же с ними спокойно уживаются.

Несколько пояснений. Кроме  того, что рамка каждого люка имеет  заданную кривизну, в момент установки  она «подтягивает» крышу под  свою форму, слегка ее меняя. Поэтому  далеко не каждый люк подойдет к  любому автомобилю. Например, есть проблемы с их установкой в тольяттинские 2104 и 2112. В первом случае мешают две продольные отштамповки на крыше, во втором — большая кривизна крыши и проходящая под обивкой потолка разводка электрической сети. Тем не менее, и для этих машин можно подобрать свои модели. Выбирая люки, обратите внимание на стекла. Они могут отличаться плотностью тонировки, наличием зеркального покрытия. Стекла также могут быть гладкими или иметь рельефное растровое противосолнечное покрытие. Более плотные стекла защищают от солнечных лучей, но снижают эффект распахнутого окна. Зеркальное покрытие более прозрачное, но менее стойкое. Выгорая, оно будет терять привлекательный внешний вид. Растрированные стекла быстрее пачкаются и их труднее мыть, но они хорошо защищают от солнечных лучей. Гладкие не защищают от солнца вовсе, но дают много света. Выбор стекол — дело вкуса. Так же, как и выбор шторки. Есть желание и деньги — ставьте, нет — люки и так хороши.

Обязательно поставьте автомобиль с обновкой под машинную мойку  минут на 10-15. Этого вполне достаточно, чтобы убедиться в герметичности  установки. Если что, вернитесь к  установщику. В процессе эксплуатации люка старайтесь открывать его как  можно чаще. Длительное поджатие стекла к уплотнительной резинке приведет в итоге к ее ужесточению и  растрескиванию. Принимая готовую машину, обратите внимание на плотность подгонки обивки потолка к уплотняющей  рамке. Она должна лежать ровно, не провисать  и не иметь пузырей. Люки некоторых  моделей, например, Mistral 2, имеют замки для снятия стекол.

1.2.9 Настроенный  выхлоп

Мощность есть произведение вращающего момента на скорость вращения коленчатого вала (обороты), так, что  мощность – зависимая от скорости величина. Рассмотрим чисто теоретический  двигатель (не важно, электрический  он, внутреннего сгорания или турбореактивный), который отдает постоянный вращающий  момент на оборотах от 0 до бесконечности (кривая 2 на рис.). Тогда его мощность будет линейно расти с оборотами  от 0 до бесконечности (кривая 1 на рис.). Предмет нашего интереса – четырехтактные многоцилиндровые двигатели внутреннего  сгорания в силу конструкции и  процессов, в них происходящих, имеют  рост момента с увеличением оборотов до его максимальной величины, и  с дальнейшим увеличением оборотов момент снова падает (кривая 3 на рис. 1). Тогда и мощность будет иметь  аналогичный вид (кривая 4 на рис. 1). Важным обстоятельством для понимания  функций выпускной системы является связь вращающего момента с коэффициентом  наполнения цилиндра. Давайте себе представим процесс, происходящий в  цилиндре в фазе впуска. Предположим, коленчатый вал двигателя вращается  настолько медленно, что мы можем наблюдать движение топливовоздушной смеси в цилиндре и в любой момент времени давление во впускном трубопроводе и цилиндре успевает выравниваться. Предположим, что в верхней мертвой точке (ВМТ) давление в камере сгорания равно атмосферному. Тогда при движении поршня из ВМТ в нижнюю мертвую точку (НМТ) в цилиндр попадет количество свежей топливовоздушной смеси, точно равное объему цилиндра. Говорят, что в таком случае коэффициент наполнения равен единице. Предположим, что в вышеописанном процессе мы закроем впускной клапан в положении поршня, соответствующем 80% его хода. Тогда мы наполним цилиндр только на 80% его объема и масса заряда составит соответственно 80%. Коэффициент наполнения в таком случае будет 0.8. Другой случай. Пусть некоторым образом нам удалось во впускном коллекторе создать давление на 20% выше атмосферного. Тогда в фазе впуска мы сможем наполнить цилиндр на 120% по массе заряда, что будет соответствовать коэффициенту наполнения 1.2. Так, теперь самое главное. Вращающий момент двигателя совершенно точно на кривой момента соответствует коэффициенту наполнения цилиндра. То есть вращающий момент там выше, где коэффициент наполнения выше, и ровно во столько же раз, если, конечно, мы не учитываем внутренние потери в двигателе, которые растут со скоростью вращения. Из этого понятно, что кривую момента и, соответственно, кривую мощности определяет зависимость коэффициента наполнения от оборотов. У нас есть возможность влиять в некоторых пределах на зависимость коэффициента наполнения от скорости вращения двигателя с помощью изменения фаз газораспределения. В общем случае, не вдаваясь в подробности, можно сказать, что чем шире фазы и чем в более раннюю по отношению к коленчатому валу область мы их сдвигаем, тем на больших оборотах будет достигнут максимум вращающего момента. Абсолютное значение максимального момента при этом будет немного меньше, чем с более узкими фазами (кривая 5 на рис.). Существенное значение имеет так называемая фаза перекрытия. Дело в том, что при высокой скорости вращения определенное влияние оказывает инерция газов в двигателе. Для лучшего наполнения в конце фазы выпуска выпускной клапан надо закрывать несколько позже ВМТ, а впускной открывать намного раньше ВМТ. Тогда у двигателя появляется состояние, когда в районе ВМТ при минимальном объеме над поршнем оба клапана открыты и впускной коллектор сообщается с выпускным через камеру сгорания. Это очень важное состояние в смысле влияния выпускной системы на работу двигателя. Теперь, я думаю, пора рассмотреть функции выпускной системы. Сразу скажу, что в выпускной системе присутствует три процесса. Первый – сдемпфированное в той или иной степени истечение газов по трубам. Второй – гашение акустических волн с целью уменьшения шума. И третий – распространение ударных волн в газовой среде. Любой из названных процессов мы будем рассматривать с позиции его влияния на коэффициент наполнения. Строго говоря, нас интересует давление в коллекторе у выпускного клапана в момент его открытия. Понятно, что чем меньшее давление, а лучше даже ниже атмосферного, удастся получить, тем больше будет перепад давления от впускного коллектора к выпускному, тем больший заряд получит цилиндр в фазе впуска. Начнем с достаточно очевидных вещей. Выпускная труба служит для отвода выхлопных газов за пределы кузова автомобиля. Совершенно понятно, что она не должна оказывать существенного сопротивления потоку. Если по какой то причине в выпускной трубе появился посторонний предмет, закрывающий поток газов, то давление в выпускной трубе не будет успевать падать, и в момент открытия выпускного клапана давление в коллекторе будет противодействовать очистке цилиндра. Коэффициент наполнения упадет, так как оставшееся большое количество отработанных газов не позволит наполнить цилиндры в прежней степени свежей смесью. Соответственно, двигатель не сможет вырабатывать прежний вращающий момент. Весьма важно понимать, что размеры трубы и конструкция глушителей шума в серийном автомобиле достаточно хорошо соответствуют количеству отработанных газов, вырабатываемых двигателем в единицу времени. Как только серийный двигатель подвергся изменениям с целью увеличения мощности (будь то увеличение рабочего объема или увеличение момента на высоких оборотах), сразу увеличивается расход газа через выпускную трубу и следует ответить на вопрос, а не создает ли теперь в новых условиях избыточного сопротивления серийная выпускная система. Так что из рассмотрения первого процесса, обозначенного нами, следует сделать вывод о достаточности размеров труб. Совершенно понятно, что после некоторого разумного размера увеличивать сечение труб для конкретного двигателя бессмысленно, улучшения не будет. А отвечая на вопрос, где же мощность, можно сказать, что тут главное не потерять, прибрести же ничего невозможно. Из практики можно сказать, что для двигателя объемом 1600 куб. см, имеющего хороший вращающий момент до 8000 об./мин., вполне достаточно трубы диаметром 52 мм. Как только мы говорим о сопротивлении в выпускной системе, необходимо упомянуть о таком важном элементе, как глушитель шума. Так как в любом случае глушитель создает сопротивление потоку, то можно сказать, что лучший глушитель – полное его отсутствие. К сожалению, для дорожного автомобиля это могут себе позволить только отчаянные хамы. Борьба с шумом – это, как ни верти, забота о нашем с вами здоровье. Не только в повседневной жизни, но и в автоспорте действуют ограничения на шум, производимый двигателем автомобиля.

В большинстве классов  спортивных автомобилей шум выпуска  ограничен уровнем 100 дб. Это довольно лояльные условия, но без глушителя ни один автомобиль не будет соответствовать техтребованиям и не сможет быть допущенным к соревнованиям. Поэтому выбор глушителя – всегда компромисс между его способностью поглощать звук и низким сопротивлением потоку.

Акустические волны (шум) несут в себе энергию, которая  возбуждает наш слух. Задача глушителя  состоит в том, чтобы энергию  колебаний перевести в тепловую. По способу работы глушители надо разделить на четыре группы. Это ограничители, отражатели, резонаторы и поглотители.

Ограничитель

Принцип его работы прост. В корпусе глушителя имеется  существенное заужение диаметра трубы, некое акустическое сопротивление, а за ним сразу большой объем, аналог емкости. Продавливая через сопротивление звук, мы колебания сглаживаем объемом. Энергия рассеивается в дросселе, нагревая газ. Чем больше сопротивление (меньше отверстие), тем эффективней сглаживание. Но тем больше сопротивление потоку. Наверное, плохой глушитель. Однако в качестве предварительного глушителя в системе – довольно распространенная конструкция.

Отражатель

В корпусе глушителя организуется большое количество акустических зеркал, от которых звуковые волны отражаются. Известно, что при каждом отражении  часть энергии теряется, тратится на нагрев зеркала. Если устроить для  звука целый лабиринт из зеркал, то в конце концов мы рассеем почти всю энергию и наружу выйдет весьма ослабленный звук. По такому принципу строятся пистолетные глушители. Значительно лучшая конструкция, однако так как в недрах корпуса мы заставим также газовый поток менять направление, то все равно создадим некоторое сопротивление выхлопным газам. Такая конструкция чаще всего применяется в оконечных глушителях стандартных систем.

Резонатор

Глушители резонаторного  типа используют замкнутые полости, расположенные рядом с трубопроводом  и соединенные с ним рядом  отверстий. Часто в одном корпусе  бывает два не равных объема, разделенных  глухой перегородкой. Каждое отверстие  вместе с замкнутой полостью является резонатором, возбуждающим колебания  собственной частоты. Условия распространения  резонансной частоты резко меняются, и она эффективно гасится вследствие трения частиц газа в отверстии. Такие  глушители эффективно в малых  размерах гасят низкие частоты и  применяются в основном в качестве предварительных, первых в выпускных  системах. Существенного сопротивления  потоку не оказывают, т.к. сечение не уменьшают.

Поглотитель

Способ работы поглотителей заключается в поглощении акустических волн неким пористым материалом. Если мы звук направим, например, в стекловату, то он вызовет колебания волокон  ваты и трение волокон друг о друга. Таким образом, звуковые колебания  будут преобразованы в тепло. Поглотите ли позволяют построить конструкцию глушителя без уменьшения сечения трубопровода и даже без изгибов, окружив трубу с прорезанными в ней отверстиями слоем поглощающего материала. Такой глушитель будет иметь минимально возможное сопротивление потоку, однако и хуже всего снижает шум. Надо сказать, что серийные выпускные системы используют в большинстве случаев различные комбинации всех приведенных способов. Глушителей в системе бывает два, а иногда и больше. Следует обратить внимание на особенность конструкций глушителей, которая в случае самостоятельного изготовления не позволяет достичь эффективного снижения шума, хотя кажется, что все сделано правильно. Если внутри глушителя у его стенок нет поглощающего материала, то источником звука становятся стенки корпуса. Некоторые глушители имеют снаружи асбестовую обкладку, прижатую дополнительным листом фальшкорпуса. Это и есть та мера, которая позволит ограничить излучение через стенки и предотвратить нагрев соседних элементов автомобиля. Такая мера характерна для глушителей первого и второго типов. Есть еще одно обстоятельство, которое нельзя обойти вниманием в статье о тюнинге. Это тембр звука. Часто пожелания клиента к тюнинговой компании состоят в том, чтобы посредством замены глушителя добиться “благородного” звучания мотора. Если требования к выпускной системе не распространяются дальше изменения “голоса”, то за дача существенно упрощается. Можно сказать, что, вероятнее всего, для таких целей больше подходит глушитель поглотительного типа. Его объем, количество набивки, а также сама набивка определяют спектр частот, интенсивно поглощаемых. Практически любая мягкая набивка поглощает в большей степени высокочастотную составляющую, придавая бархатистость звуку. Глушители резонаторного типа гасят низкие частоты. Таким образом, варьируя размеры, содержимое и набор элементов, можно подобрать тембр звучания.

Из всего выше указанного следует, что коэффициент наполнения, вращающий момент и мощность зависят  от перепада давления между впускным и выпускным коллекторами в фазе продувки. Выпускную систему можно  построить таким образом, что  распространяющиеся в трубах ударные  волны, отражаясь от различных элементов  системы, будут возвращаться к выпускному клапану в виде скачка давления или  разрежения. Откуда же появится разрежение, спросите вы. Ведь в трубу мы всегда только нагнетаем и никогда не отсасываем. Дело в том, что в силу инерции газов за скачком давления всегда следует фронт разрежения. Именно фронт разрежения интересует нас больше всего. Нужно только сделать  так, чтобы он был в нужном месте  в нужное время. Место нам уже  хорошо известно. Это выпускной клапан. А время нужно уточнить. Дело в  том, что время действия фронта весьма незначительное. А время открытия выпускного клапана, когда фронт  разрежения может создать полезную для нас работу, сильно зависит  от скорости вращения двигателя. Да и  весь период фазы выпуска нужно разбить  на две составляющие. Первая – когда  клапан только что открылся. Эта  часть характеризуется большим  перепадом давления и активным истечением газов в выпускной коллектор. Отработанные газы и без посторонней  помощи после рабочего хода покидают цилиндр. Если в этот момент волна  разрежения достигнет выпускного клапана, маловероятно, что она сможет повлиять на процесс очистки. А вот конец  выпуска более интересен. Давление в цилиндре уже упало почти  до атмосферного. Поршень находится около ВМТ, значит, объем над поршнем минимален. Да еще впускной клапан уже приоткрыт. Фаза перекрытия характеризуется тем, что впускной коллектор через камеру сгорания сообщается с выпускным. Вот теперь, если фронт разрежения достигнет выпускного клапана, мы сможем существенно улучшить коэффициент наполнения, так как даже за короткое время действия фронта удастся продуть маленький объем камеры сгорания и создать разрежение, которое поможет разгону топливовоздушной смеси в канале впускного коллектора. А если представить себе, что как только все отработанные газы покинут цилиндр, а разрежение достигнет свое го максимального значения, выпускной клапан закроется, мы сможем в фазе впуска получить заряд больший, чем, если бы очистили цилиндр только до атмосферного давления. Этот процесс дозарядки цилиндров с помощью ударных волн в выпускных трубах может позволить получить высокий коэффициент наполнения и, как следствие, дополнительную мощность. Результат его действия примерно такой, как если бы мы нагнетали давление во впускном коллекторе с помощью компрессора. В конце концов, какая разница, каким образом создан перепад давления, заталкивающий свежую смесь в камеру сгорания, с помощью нагнетания со стороны впуска или разрежения в цилиндре? Такой вот процесс может вполне происходить в выпускной системе ДВС.[13]

1.2.10 Увеличение  мощности

Работа двигателя это  всегда компромисс между многими  величинами. Основополагающими для  разработчиков сегодня является себестоимость, экономичность, ресурс двигателя и токсичность выхлопа. Не рассматривая экономические стороны, подробнее рассмотрим все за и  против:

Ресурс двигателя с  меньшей отдачей выше, чем аналогичный  параметр у более форсированного мотора. Требования к качеству топлива  в варианте с форсированым двигателем выше. Жёсткие нормы по уровню токсичности заставляют разработчиков переводить двигатели на работу с более обеднёнными смесями и устанавливать катализаторы.

Со стороны потребителя  требования к мотору тоже взаимоисключающие. Хочется высокой мощности, крутящего  момента, надёжности и огромного  ресурса - при всём этом желательно заправлять автомобиль самым дешевым  топливом и иметь маленький его  расход. Однако чудес на свете не бывает - улучшение одних параметров всегда ухудшает другие. Поэтому для  нас всегда есть выбор - довериться разработчикам и оставить всё  как есть или пойти по пути экспериментов по доводке установленного на Вашем автомобиле двигателя. Сделать с мотором можно многое, однако стоимость многих радикальных переделок зачастую оказывается просто невыгодной. Намного проще вложить эти деньги в приобретение автомобиля с более мощным мотором. Получить более высокую отдачу от мотора можно лишь увеличив наполнение цилиндров и изменив состав смеси. Методов увеличения наполнения существует множество. Условно их можно разделить на несколько категорий:

1. Уменьшение сопротивления  потоку воздуха - Замена воздушного  фильтра, замена или переделка  корпуса дроссельной заслонки, замена  или расточка и шлифовка впускного  коллектора, переделка головки блока  (замена клапанов на клапана  с большим диаметром и расточка  воздушных каналов), установка или  оптимизация работы наддува. Тем  же целям служит и установка  распредвала с другим профилем кулачков - для изменения величины и продолжительности открытия клапанов.

2. Оптимизация состава  рабочей смеси - изменение количества  топлива для разных режимов  работы достигается несколькими  способами: Увеличение магистрального  давления топлива заменой или  настройкой регулятора давления  топлива и изменение программы  работы ЭБУ (чип-тюнинг).

3. Механизм изменения фаз  ГРМ - оптимизация фаз газораспределения  для различной частоты вращения  двигателя. Оптимизация выпуска  - Улучшение продувки цилиндров  снижением сопротивления выпускного  коллектора и глушителя (в идеале  следует поставить трубу большого  диаметра и, причём без изгибов).

Мы не рассматриваю варианты требующие расточки блока, обрезки  поршней или замены коленвала - у нас стоит задача получить максимальную мощность от того же мотора. Кроме того, многие из вышеперечисленных методов требуют вмешательства в механическую часть двигателя - что в случае нового автомобиля автоматически лишает Вас возможности гарантийного ремонта.

Что же такое ЧИП применительно  к автомобильному двигателю? В любой  блок управления заложена программа  его работы. Набор поправочных  коэффициентов для различных  режимов работы двигателя заложен  в ПЗУ блока. Блок управления получая  сигналы от различных датчиков, управляет  работой исполнительных устройств  для обеспечения оптимальной (зачастую по мнению разработчиков) работы силового агрегата. Необходимые параметры для управления исполнительными устройствами вычисляются в соответствии с приходящими данными и набором коэффициентов коррекции, заложенных в ПЗУ. Таким образом, желая изменить работу двигателя, не изменяя механических его составляющих, мы имеем для этого два очевидных пути:

Первый - изменение входящих сигналов (для примера - изменение  жёсткости возвратной пружины заслонки расходомера воздуха).

Второй - изменение коэффициентов  коррекции в памяти ПЗУ (чип-тюнинг)

Изменяя данные ПЗУ мы можем  влиять на работу практически любого исполнительного устройства, из тех, которыми управляет ЭБУ. Для получения других мощностных характеристик мы можем изменить установку угла опережения зажигания, величину времени впрыска, отключить или изменить режим работы систем, контролирующих токсичность выхлопных газов, для двигателей с компрессором можно изменить величину давления наддува. Кроме того, мы можем изменить обороты холостого хода, максимально разрешённые обороты двигателя и максимально допустимую скорость автомобиля (при её электронном ограничении). Велика ли роль данных изменений в получении от двигателя максимальной мощности? Нет - её прирост может составлять 5-10%, (исключение составляют надувные двигатели, где без особых затруднений можно получить прибавку в 20% и даже более). Каждый сам решает делать или нет, но тот, кто хоть раз проехал на чипованой машине, решает этот вопрос для себя однозначно - да! Дело в том, что мало кто ездит на режиме максимальной мощности - намного более важные параметры для повседневной езды это крутящий момент и эластичность двигателя. Равные величины момента достигаются на разных оборотах двигателя. Что это означает: При резком нажатии на педаль акселератора на чипованном автомобиле, подхват двигателя произойдёт на более низких оборотах. То есть зачастую Вам просто не нужно будет переключаться на пониженную передачу, а переключившись вниз вы получите ещё большую интенсивность разгона.[14]

Информация о работе Тюнинг внедорожников