Виды ионизирующих излучений и особенности воздействия на вещества

Автор работы: Пользователь скрыл имя, 22 Декабря 2014 в 23:01, реферат

Описание работы

История открытия и изучения альфа-частиц связана с именем Резерфорда. При помощи альфа-частиц Резерфорд проводил исследования большинства атомных ядер.
Альфа-частицы это атомы гелия, потерявшие два электрона, т.е. ядра атома гелия
Ядро гелия, состоящее из двух протонов и двух нейтронов устойчиво, частицы связаны в нем прочно.

Содержание работы

1.Виды ионизирующих излучений и особенности воздействия на вещества.
1)Взаимодействие альфа- и бета-частиц с веществом.
2)Взаимодействие гамма-излучения с веществом.
3)Взаимодействие с веществом нейронного излучения.

2.Основы дозиметрии и радиометрии ионизирующих излучений
1)Основные принципы обнаружения и регистрации ионизирующих излучений.
2)Методы измерения и расчёта доз при внешнем и внутреннем излучении.

Файлы: 1 файл

rad_bezop_1.docx

— 45.37 Кб (Скачать файл)

Министерство сельского хозяйства

Республики Беларусь

УО « Гродненский Государственный Аграрный Университет»

Радиационная безопасность

 

 

 

 

 

 

 

 

 

Реферат

 

Виды ионизирующих излучений и особенности воздействия на вещества.

Основы дозиметрии и радиометрии ионизирующих излучений

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Выполнила студент 1 курса

1 группы

Экономического факультета

Ромазевич Влад

 

 

 

 

 

2014

 

Оглавление

 

1.Виды  ионизирующих излучений и особенности  воздействия на вещества.

         1)Взаимодействие  альфа- и бета-частиц с веществом.

         2)Взаимодействие гамма-излучения с веществом.

         3)Взаимодействие с веществом нейронного излучения.

 

2.Основы  дозиметрии и радиометрии ионизирующих излучений

         1)Основные принципы обнаружения и регистрации ионизирующих    излучений.

         2)Методы измерения и расчёта доз при внешнем и внутреннем излучении.

 

1.Общая характеристика  воздействия альфа и бета на  вещество.

 

 

История открытия и изучения альфа-частиц связана с именем Резерфорда. При помощи альфа-частиц Резерфорд проводил исследования большинства атомных ядер.

Альфа-частицы это атомы гелия, потерявшие два электрона, т.е. ядра атома гелия

Ядро гелия, состоящее из двух протонов и двух нейтронов устойчиво, частицы связаны в нем прочно.

В настоящее время известно более 200 альфа активных ядер, главным образом тяжёлых (А > 200, Z > 82 ), исключение составляют редкоземельные элементы (А=140-160). Примером альфа распада может служить распад изотопов урана:

 

 

Скорости, с которыми альфа-частицы ,, вылетают из распавшегося ядра, очень велики и колеблются для разных ядер в пределах от 1,4 х 107 до 2,0x10' м/с, что соответствует кинетическим энергиям этих частиц 4—8,8 МэВ. Альфа-частицы в состав ядра не входят, и, по современным представлениям, они образуются в момент радиоактивного распада при встрече движущихся внутри ядра 2-х протонов и 2-х нейтронов.

Пролетая через вещество, альфа-частицы постепенно теряют свою энергию, затрачивая ее на ионизацию газов. Причём в начале пути, когда энергия альфа-частиц велика, удельная ионизация меньше, чем в конце пути.

Под пробегом частицы в веществе понимается толщина слоя этого вещества, которую может пройти эта частица до полной остановки. Пробег частиц в основном определен для тяжелых частиц, т.к. их путь представляет прямую линию с наименьшим рассеянием. Пробег альфа-частиц зависит как от энергии частиц, так и от плотности вещества, в котором они движутся.

По пробегу альфа частицы можно определить ее энергию.

 
Бета-распад происходит, когда замена в атомном ядре ( нейтрона на протон энергетически выгодна, и образующееся новое ядро имеет большую энергию связи. Бета-излучение состоит из бета-частиц (электронов или позитронов), которые испускаются при бета-распаде радиоактивных изотопов. Электроны не входят в состав ядра и не выбрасываются из оболочки атома, при электроном бета- распаде происходит превращение нейтрона в протон с одновременным образованием электрона и вылетом антинейтрино. При этом заряд ядра и его порядковый номер увеличиваются на единицу. Электронный распад характерен для ядер с избыточным числом нейтронов. Примером электронного бета-распада может служить распад стронция:

 

 

При позитронном бета-распаде происходит превращение протона в нейтрон с образованием и выбросом из ядра позитрона. Заряд и порядковый номер ядра уменьшаются на единицу. Позитронный бета-распад наблюдается для неустойчивых ядер с избыточным числом протонов. Примером позитронного бета-распада может служить распад радионуклида натрия:

 

 

К бета-распаду относится также электронный захват (е-захват), т.е. захват атомным ядром одного из электронов своего атома. При этом один из протонов ядра превращается в нейтрон и испускается нейтрино. Возникшее ядро может оказаться в возбужденном состоянии.

Переходя в основное состояние оно испускает гамма-фотон. Место в электронной оболочке, освобожденное захваченным электроном, заполняется электронами из вышестоящих слоев, в результате возникает рентгеновское излучение.

Примером электронного захвата может служить следующая реакция:

 

 

Бета-частицы, испускаемые при бета-распаде, имеют различную энергию, поэтому и пробег их в веществе не одинаков. Путь, проходимый бета-частицей в веществе, представляет собою не прямую линию, как у альфа-частиц, а ломаную. Взаимодействуя с веществом среды, бета-частицы проходят вблизи ядра. В поле положительно заряженного ядра отрицательно заряженная бета-частица резко тормозится и теряет при этом часть своей энергии. Эта энергия излучается в виде тормозного рентгеновского излучения. С увеличением энергии бета-частиц и атомного номера вещества интенсивность рентгеновского излучения возрастает.

Ионизирующая способность бета-частиц много меньше, а длина пробега много больше, чем у альфа-частиц.

2.Особенности  излучения свойством воздействия  гамма на вещество

В литературе часто встречаются термины радиоактивных излучений: рентгеновские или гамма-лучи, или общее название — электромагнитные волны с короткими длинами волн, которые обладают большой проникающей способностью в веществе. Различные названия рентгеновские и гамма лучи — связаны не с различными физическими свойствами этих лучей, а со способом их получения. Наиболее часто употребляется гамма-излучение, которое не является самостоятельным видом радиоактивности, а только сопровождает альфа- и бета- распады. Оно возникает при ядерных реакциях, при торможении заряженных частиц и т.д.

Гамма-излучение испускается дочерним ядром. Дочернее ядро в момент своего образования оказывается возбуждённым, а затем за время с оно переходит в основное состояние с испусканием гамма-излучения. Возвращаясь в основное состояние, ядро может пройти через ряд промежуточных состояний, поэтому гамма-излучение может содержать несколько групп гамма-квантов, отличающихся значениями энергии.

Гамма-кванты, обладая нулевой массой покоя, не могут замедляться в среде, они или поглощаются или рассеиваются. Гамма-излучение не имеет заряда и тем самым не испытывает влияния кулоновских сил. При прохождении пучка гамма-квантов через вещество их энергия не меняется, но уменьшается интенсивность, согласно закону ( — интенсивности гамма-излучения на входе и выходе слоя поглощающего вещества толщиной X,  — коэффициент поглощения); зависит от свойств вещества и энергии гамма-квантов.

Основными процессами, сопровождающими прохождение гамма-излучения через вещество является фотоэффект, компто-новское рассеяние и образование электронно-позитронных пар (рис. 1.3).

Фотоэффектом называется процесс, при котором атом полностью поглощает гамма квант с энергией hv и испускает электрон с кинетической энергией Ek , равной

 

 

где I — энергия ионизации соответствующей атомной оболочки. Если энергия hv достаточна для вырывания электрона из любой атомной оболочки (hv > ), то наиболее вероятным будет испускание сильно связанных, т.е. глубинных атомных электронов. Увеличение порядкового номера z поглотителя приводит к увеличению вероятности фотоэффекта, поскольку ослабляется связь электронов с атомным остатком и возрастает число электронов в атоме. С ростом энергии hv вероятность фотоэффекта понижается.

Комптоновским рассеянием называется такой процесс, при котором гамма-квант, взаимодействуя со слабо связанным электроном, передает ему часть своей энергии hv и рассеивается под углом q к первоначальному направлению, а электрон покидает атом, обладая кинетической энергией.

Увеличение энергии гамма квантов приводит к монотонному убыванию вероятности Комптон-эффекта.

Рождение электронно-позитронной пары — процесс, при котором гамма-квант превращается в пару частиц — электрон и позитрон, в результате взаимодействия с электрическим полем ядра или электрона. Процесс рождения пары частиц в поле ядра возможен при энергиях гамма-квантов превышающих 1,02 МэВ. Для возникновения такого же процесса в поле электрона энергия гамма квантов должна достичь порогового значения 2,04 МэВ.

Механизм поглощения гамма-излучения зависит от его энергии. Если энергия кванта меньше 100-200 кэВ, то наиболее вероятным механизмом поглощения является фотоэффект. Образовавшийся при фотоэффекте электрон способен вызвать ионизацию среды в которой он движется. При энергиях, больших 200 кэВ и вплоть до 100 МэВ, основным механизмом поглощения энергии гамма квантов является Комптон-эффект. Начиная с энергии гамма кванта 1,02 МэВ появляется вероятность образования электронно-позитронных пар. Энергия кванта, равная 1,02 МэВ, расходуется на образование пары, а избыток энергии кванта переходит в кинетическую энергию образующихся частиц, которые теряют эту энергию при столкновении с электронами. Наряду с процессом образования пар происходит их аннигиляция с образованием двух гамма квантов

 

 

3.Особенности  воздействия нейтронного излучения

 

Нейтроны, имеющие нулевой заряд, не взаимодействуют с электронной оболочкой встреченных атомов, а поэтому могут проникать вглубь их. Проникающая способность нейтронов весьма велика. При этом нейтроны могут либо поглощаться ядрами, либо рассеиваться на них. При упругом рассеивании на ядрах углерода, азота, кислорода и других элементов, входящих в состав тканей, нейтроны теряют лишь 10-15% энергии, а при столкновении с почти равными с ними по массе ядрами водорода — протонами — энергия нейтрона уменьшается в среднем вдвое. Поэтому, с одной стороны, вещества, содержащие большое количество атомов водорода (вода, парафин), используют для замедления нейтронов. С другой стороны, процесс упругого соударения нейтронов с протонами используется для регистрации быстрых нейтронов. В самом деле при упругом ударе нейтрона с неподвижным протоном последнему передаётся большая часть кинетической энергии нейтрона — нейтрон практически останавливается, а протон начинает двигаться в том направлении, в котором двигался нейтрон. Движущийся протон на своём пути производит интенсивную ионизацию, которая регистрируется счётчиком или камерой Вильсона.

Испытавшие столкновение нейтроны совершают хаотическое движение с тепловыми скоростями. Такие тепловые нейтроны могут быть зарегистрированы с помощью ядерных реакций, при которых нейтрон, проникая в ядро, способствует вылету из него высокоэнергетической альфа-частицы. По количеству ионизации, производимых этими альфа-частицами, можно судить о прохождении через камеру медленных нейтронов.

Кроме упругих взаимодействий нейтронов с ядрами, возможны и неупругие взаимодействия. При таком взаимодействии нейтрон поглощается ядром. В результате этого поглощения (радиационного захвата) образуется нестабильный тяжёлый изотоп, который испытывает бета-распад, сопровождающийся гамма-излучением. Процесс радиационного захвата нейтронов используется в технике для получения искусственных радиоактивных нуклидов, например, кобальта (радиоактивный распад сопровождается испусканием бета-частиц с максимальной энергией 1,33 МэВ).

 

 

Представляет интерес реакция протекающая в атмосфере постоянно под действием нейтронов, содержащихся в космическом излучении. Возникающий при этом углерод радиоактивен, его период полураспада составляет 5730 лет. Радиоуглерод усваивается растениями в результате фотосинтеза и участвует в круговороте веществ в природе. Установлено, что равновесная концентрация  в различных местах земного шара одинакова и соответствует примерно 14 распадам в минуту на каждый грамм углерода. Когда организм умирает, процесс усвоения углерода прекращается и концентрация  в организме начинает убывать по закону радиоактивного распада. Таким образом, измерив концентрацию   в останках организмов, тканей и т.д. можно определить их возраст.

Захватом нейтрона сопровождается также одна из важнейших реакций — реакция деления, в результате которой ядро делится на две примерно равные по массе части. При делении ядра образуются новые вторичные нейтроны: два-три на каждый акт деления, которые могут, в свою очередь, вызвать деление других ядер вещества, что в соответствующих условиях может вызвать цепную реакцию.

Реакции деления атомных ядер будут рассмотрены более подробно ниже.

В заключение заметим, что при попадании нейтронов на тело человека, так же как гамма квантов или альфа, бета-частиц, их воздействие сводится, в конечном счете, к ионизации биологической ткани. Напомним кратко свойства трех видов излучений.

Альфа излучение — проникающая способность невелика, задерживается листом бумаги, одеждой, неповрежденной кожей; оно не представляет опасности до тех пор, пока радиоактивные вещества не попадут внутрь организма с пищей или вдыхаемым воздухом. При попадании внутрь организма альфа-излучение приводит к серьезному повреждению близлежащих клеток.

Бета излучение — быстрые, движущиеся с огромной скоростью электроны, проходит в ткани организма на глубину 1-2 см, однако от него можно защититься тонким слоем металла — 1,25 см, слоем дерева или плотной одеждой.

Гамма излучение и рентгеновское излучение — электромагнитное излучение, обладает очень большой энергией и проникающей способностью, оно проходит сквозь биологические ткани человека и его можно задержать лишь свинцовыми или бетонными плитами.

Основную дозовую нагрузку на организм человека в результате Чернобыльской катастрофы на территории Гомельской и Могилевской областей определяют следующие радионуклиды и виды излучений:

цезий-137 — 90%- гамма-частиц, 10% бета-частиц,

стронций-90 — 100% альфа-частиц,

плутоний — 100% альфа-частиц,

калий-40 — (естественный радионуклид) 10% — гамма-частиц, 90% — бета-частиц.

Кроме вышеперечисленных радионуклидов в почвах и растениях гамма-излучения определяют также цезий-134, церий-144, рутений-106.

При прохождении ионизирующего излучения через вещество происходит потеря энергии излучения. Среднюю энергию частицы, теряемую на единице длины её пути в веществе называют линейной передачей энергии (ЛПЭ). Понятие ЛПЭ было введено в 1954 году. За единицу ЛПЭ принимают 1 кэВ на 1 км пути: 1 кэВ/мкм = 62 Дж/м. Все ионизирующие излучения в зависимости от значения ЛПЭ делятся на редко- и плотно ионизирующие. К редко ионизирующим излучениям принято относить все виды излучения, для которых ЛПЭ = 10 кэВ/мкм, а к плотно ионизирующим — те, для которых ЛПЭ > 10 кэВ/мкм. Для заряженных частиц ЛПЭ возрастает с уменьшением их скорости.

 

4.Основные принципы обнаружения  и регистрации радиоионизирующих  излучений

Информация о работе Виды ионизирующих излучений и особенности воздействия на вещества