Виды ядерного оружия

Автор работы: Пользователь скрыл имя, 28 Апреля 2013 в 11:07, доклад

Описание работы

Понятие ядерное оружие объединяет взрывные устройства, в которых энергия взрыва образуется при делении или слиянии ядер. В узком смысле под ядерным оружием понимают взрывные устройства, использующие энергию, выделяемую при делении тяжелых ядер. Устройства, использующее энергию, выделяющуюся при синтезе легких ядер, называются термоядерными.
Ядерное оружие является оружием массового поражения (ОМП).

Содержание работы

Введение……………………………………………………………...............
1. История создание ядерного оружия……………………………………
2. Принцип работы……………………………………………………………
3. Виды ядерных зарядов …………………………………………………
4. Мощность ядерных боезапасов…………………………………………
5. Виды ядерных взрывов ………………………………………………....

Файлы: 1 файл

Виды ядерного оружия Федоренко.doc

— 117.50 Кб (Скачать файл)

 

 

 

 

 

 

 

 

 

Виды  ядерного оружия

Доклад

 

 

 

 

 

 

Выполнил: Федоренко Роман Константинович 

 Студент УГТУ УПИ,

физико-технического факультета, группы 190301

г. Екатеринбург

 

 

 

 

 

 

Екатеринбург, 2009

 

 

СОДЕРЖАНИЕ

Введение……………………………………………………………...............

3

   

1. История создание ядерного оружия……………………………………

4

2. Принцип работы……………………………………………………………

7

3. Виды ядерных зарядов …………………………………………………

8

4. Мощность ядерных боезапасов…………………………………………

10

5. Виды ядерных взрывов ………………………………………………....

11


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ВВЕДЕНИЕ

Понятие ядерное  оружие объединяет взрывные устройства, в которых энергия взрыва образуется при делении или слиянии ядер. В узком смысле под ядерным  оружием понимают взрывные устройства, использующие энергию, выделяемую при  делении тяжелых ядер. Устройства, использующее энергию, выделяющуюся при синтезе легких ядер, называются термоядерными.

Ядерное оружие является оружием массового поражения (ОМП). Оно способно в короткое время  уничтожить огромное количество людей, животных, разрушить здания и сооружения на больших территориях. Оно основано на внутриядерной энергии, мгновенно освобождающейся в момент взрыва. За миллионные доли секунды выделяется колоссальное количество энергии, поэтому в зоне протекания ядерных реакций температура повышается до нескольких миллионов градусов, а давление достигает

миллиардов  атмосфер. Ядерный взрыв сопровождается яркой вспышкой, даже в солнечный  день озаряющей небо и местность  вокруг на десятки километров, и  резким оглушительным звуком, напоминающим грозовые раскаты. Этот звук слышен на расстоянии десятков километров. Вслед за вспышкой при воздушном взрыве образуется огненный шар (при наземном –полушарие). Быстро увеличиваясь в размерах, огненный шар поднимается и, остывая, превращается в клубящееся облако, форма которого напоминает гриб.

Основными поражающими  факторами ядерного взрыва

являются:

                   -ударная волна

                   -световое излучение

                   -проникающая радиация

                   -радиоактивное заражение местности

                   -электромагнитный импульс

 

 

 

 

 

 

 

 

 

 

 

1. СОЗДАНИЕ ЯДЕРНОГО ОРУЖИЯ

В 1894 г. Робер  Сесил, бывший премьер-министр Великобритании, в своем обращении к Британской ассоциации содействия научному прогрессу, перечисляя нерешенные проблемы науки остановился на задаче: что же действительно представляет собой атом - существует он на самом деле или является лишь теорией, пригодной лишь для объяснения некоторых физических явлений; какова его струкура.

В США любят говорить, что атом - уроженец Америки, но это не так.

На рубеже XIX и XX веков  занимались главным образом европейские  ученые. Английский ученый Томсон предложил  модель атома, который представляет собой положительно заряженное вещество с вкрапленными электронами. Француз  Беккераль открыл радиоактивность в 1896 г. Он показал, что все вещества, содержащие уран, радиоактивны, причем, радиоактивность пропорциональна содержанию урана.

Французы Пьер Кюри и Мария  Склодовская-Кюри открыли радиоактивный  элемент радий в 1898. Они сообщили, что им удалось из урановых отходов выделить некий элемент, обладающий радиоактивностью и близкий по химическим свойствам к барию. Радиоактивность радия примерно в 1 млн. раз больше радиоактивности урана.

Англичанин Резерфорд  в 1902 году разработал теорию радиоактивного распада, в 1911 году он же открыл атомное ядро, ив 1919 году наблюдал искусственное превращение ядер.

А. Эйнштейн, живший до 1933 года в Германии, в 1905 году разработал принцип  эквивалентности массы и энергии. Он связал эти понятия и показал, что определенному количеству массы соответствует определенное количество энергии.

Датчанин Н. Бор в 1913 г. разработал теорию строения атома, которая  легла в основу физической модели устойчивого атома.

Дж. Кокфорт и Э. Уолтон (Англия) в 1932 г. экспериментально подтвердили теорию Эйнштейна.

Дж. Чедвик в том же году открыл новую элементарную частицу - нейтрон. Д. Д. Иваненко в 1932 г. выдвинул гипотезу о том, что ядра атомов состоят из протонов и нейтронов.

Э. Ферми использовал нейтроны для бомбардировки атомного ядра (1934 г.).

В 1937 году Ирен Жолио-Кюри открыла процесс деления урана. У Ирен Кюри и ее ученика-югослава П. Савича результат получился невероятный: продуктом распада урана был лантан - 57-ой элемент, расположенный в середине таблицы Менделеева.

Мейтнер, которая  в течении 30 лет работала у Гана, вместе с О. 
Фришем, работавшим у Бора, обнаружили, что при делении ядра урана части, полученные после деления, в сумме на 1/5 легче ядра урана. Это им позволило по формуле Эйнштейна посчитать энергию, содержащуюся в 1 ядре урана. Она оказалась равной 200 млн. электрон-вольт. В каждом грамме содержится 2.5X1021 атомов.

В начале 40-х  гг. 20 в. группой ученых в США были разработаны физические принципы осуществления  ядерного взрыва. Первый взрыв произведен на испытательном полигоне в Аламогордо 16 июля 1945 г. В августе 1945 2 атомные бомбы мощностью около 20 кт каждая были сброшены на японские города Хиросима и Нагасаки. Взрывы бомб вызвали огромные жертвы - Хиросима свыше 140 тысяч человек, Нагасаки - около 75 тысяч человек, а также причинили колоссальные разрушения. Применение ядерного оружия тогда не вызывалось военной необходимостью. Правящие круги США преследовали политические цели -продемонстрировать свою силу для устрашения СССР.

Вскоре ядерное  оружие было создано в СССР группой ученых во главе с академиком Курчатовым. В 1947 Советское правительство заявило, что для

СССР больше нет секрета  атомной бомбы. Потеряв монополию  на ядерное оружие, США усилило  начатые еще в 1942 работы по созданию термоядерного оружия. 1 ноября 1952 в США было взорвано термоядерное устройство мощностью 3 Мт. В СССР термоядерная бомба была впервые испытана 12 авг. 1953.

На сегодняшний день секретом ядерного оружия обладают кроме России и США также Франция, Германия, Великобритания, Китай, Пакистан, Индия, Италия.

 

 

 

2. Принцип работы

Принцип работы ядерного оружия основан на цепной реакции. В куске урана (U235) или плутония (Pu239) при бомбардировке нейтронами происходит расщепление первого ядра и освобождаются 2-3 нейтрона, которые в свою очередь расщепляют следующие 4 ядра с выделением 8-12 нейтронов и т.д. При расщеплении ядер за доли секунды, количество расщепленных атомов, а значит и количество выделенной при этом энергии, возрастает лавинообразно. Этот процесс называется цепной реакцией. Для того, чтобы цепная реакция произошла, необходима минимальная масса ядерного топлива (U235) или (Pu239) – критическая масса. Критическая масса для U235 равна 23 кг, (сфера ∅ 13 см), а для Pu239 равна 5,6 кг. В атомной бомбе неконтролируемые цепные реакции протекают с выделением такого количества энергии, которое может вызвать невероятные разрушения. Для этого необходим чистый U235 или Pu239 с критической массой, разделенной на две или более частей. Для взрыва необходимо соединить эти части над целью в единое целое, чтобы их общая масса стала более критической. Источником цепной реакции станет источник нейтронов. В миллионные доли секунды произойдет цепная реакция с выделением огромного количества энергии и смертельной радиации. Высокоактивные продукты распада сыплются с неба, неся гибель всему живому. При взрыве атомной бомбы в Хиросиме превратился в энергию всего 1 грамм вещества, но это унесло очень много человеческих жизней.

  Для создания ядерных взрывных устройств могут быть использованы и другие делящиеся вещества, например уран-233, получаемый при облучении в ядерном реакторе тория-232. Однако, практическое применение нашли только уран-235 и плутоний-239, прежде всего из-за относительной простоты получения этих материалов.

Возможность практического использования выделяющейся при делении ядер энергии обусловлена тем, что реакция деления может иметь цепной, самоподдерживающийся характер. В каждом акте деления образуется примерно два вторичных нейтрона, которые, будучи захвачены ядрами делящегося вещества, могут вызвать их деление, в свою очередь приводящее к образованию еще большего количества нейтронов. При создании специальных условий, количество нейтронов, а следовательно и актов деления, растет от поколения к поколению.

Зависимость количества актов деления от времени может быть описана с помощью так называемого коэффициента размножения нейтронов k, равного разности количества нейтронов образующихся в одном акте деления и количества нейтронов, потерянных за счет поглощения, не приводящего к делению, или за счет ухода за пределы массы делящегося вещества. Параметр k, таким образом, соответствует количеству актов деления которое вызывает распад одного ядра. Если параметр k меньше единицы, то реакция деления не имеет цепного характера, так как количество нейтронов, способных вызвать деление оказывается меньшим, чем их начальное количество. При достижении значения k=1 количество нейтронов, вызывающих деление, а значит и актов распада, не меняется от поколения к поколению. Реакция деления приобретает цепной самоподдерживающийся характер. Состояние вещества, в котором реализуется цепная реакция деления с k=1, называется критическим. При k>1 говорят о сверхкритическом состоянии.

Зависимость количества актов  деления от времени может быть представлена следующим образом:

 
где  
N-полное число актов деления, произошедших за время t с начала реакции,  
N0-число ядер, претерпевших деление в первом поколении, k-коэффициент размножения нейтронов,  
Τ(тау) -время "смены поколений," т.е. среднее время между последовательными актами деления, характерное значение которого составляет 10-8 сек.

Если предположить, что цепная реакция начинается с  одного акта деления и значение коэффициента размножения составляет 2, то несложно оценить количество поколений, необходимое для выделения энергии, эквивалентной взрыву 1 килотонны тринитротолуола (1012 калорий или 4.191012 Дж). Поскольку в каждом акте деления выделяется энергия равная примерно 180 МэВ (2.910-11 Дж), должно произойти 1.451023 актов распада (что соответствует делению примерно 57 г делящегося вещества). Подобное количество распадов произойдет в течение примерно 53 поколений делящихся ядер. Весь процесс займет около 0.5 микросекунд, причем основная доля энергии выделится в течение последних нескольких поколений. Продление процесса всего на несколько поколений приведет к значительному росту выделенной энергии. Так, для увеличения энергии взрыва в 10 раз (до 100 кт) необходимо всего пять дополнительных поколений.

Основным параметром, определяющим возможность осуществления цепной реакции деления и скорость выделения  энергии в ходе этой реакции является коэффициент размножения нейтронов. Этот коэффициент зависит как  от свойств делящихся ядер, таких как количество вторичных нейтронов, сечения реакций деления и захвата, так и от внешних факторов, определяющих потери нейтронов вызванные их уходом за пределы массы делящегося вещества. Вероятность ухода нейтронов зависит от геометрической формы образца и увеличивается с увеличением площади его поверхности. Вероятность же захвата нейтрона пропорциональна концентрации ядер делящегося вещества и длине пути, который нейтрон проходит в образце. Если взять образец, имеющий форму шара, то при увеличении массы образца вероятность приводящего к делению захвата нейтрона растет быстрее, чем вероятность его ухода, что приводит к увеличению коэффициента размножения. Массу, при которой подобный образец достигает критического состояния (k=1), называют критической массой делящегося вещества. Для высокообогащенного урана значение критической массы составляет около 52 кг, для оружейного плутония-11 кг. Критическую массу можно уменьшить примерно вдвое окружив образец делящегося вещества слоем материала, отражающего нейтроны, например, бериллия или природного урана.

Цепная реакция  возможна и при наличии меньшего количества делящегося вещества. Поскольку  вероятность захвата пропорциональна  концентрации ядер, увеличение плотности  образца, например в результате его сжатия, способно привести к возникновению в образце критического состояния. Именно этот способ и применяется в ядерных взрывных устройствах, в которых масса делящегося вещества, находящаяся в подкритическом состоянии переводится в сверхкритическое с помощью направленного взрыва, подвергающего заряд сильной степени сжатия. Минимальное количество делящегося вещества, необходимого для осуществления цепной реакции, зависит в основном от достижимой на практике степени сжатия.

Степень и скорость сжатия массы делящегося вещества определяют не только количество расщепляющегося материала, необходимого для создания взрывного устройства, но и мощность взрыва. Причиной этого служит тот факт, что энергия, выделяющаяся в ходе цепной реакции приводит к быстрому разогреву массы делящегося вещества и, как результат, к разлету этой массы. Через некоторое время заряд теряет критичность и цепная реакция останавливается. Поскольку полная энергия взрыва зависит от количества ядер, успевших претерпеть деление за время в течение которого заряд находился в критическом состоянии, для получения достаточно большой мощности взрыва необходимо удерживать массу делящегося вещества в критическом состоянии как можно дольше. На практике это достигается путем быстрого сжатия заряда с помощью направленного взрыва, так что в момент начала цепной реакции, масса делящегося вещества обладает очень большим запасом критичности.

Информация о работе Виды ядерного оружия