Поражающие факторы ядерного взрыва

Автор работы: Пользователь скрыл имя, 11 Мая 2013 в 13:09, реферат

Описание работы

Поражающими факторами ядерного взрыва (ЯВ) являются: световое излучение, проникающая радиация, ударная волна, радиоактивное заражение. Электромагнитный импульс (ЭМИ) влияния на людей по понятным причинам не оказывает, зато выводит из строя электронное оборудование. Примерно половина всей энергии выходит в виде ударной волны, остальное - световое излучение, на долю проникающей радиации (гамма-лучей и нейтронов) приходится не более 5%. Такое разнообразие поражающих факторов говорит о том, что ЯВ представляет собой гораздо более опасное явление, чем взрыв аналогичного по энерговыходу количества обычной взрывчатки.

Файлы: 1 файл

световое излучение....doc

— 100.50 Кб (Скачать файл)

Типы и еденицы  измерения радиоактивности

 

    При распаде  нестабильного изотопа испускается  ионизирующее излучение. Оно бывает трех типов: альфа, бета, гамма. Испускаться  может один или несколько из этих видов. Альфа-лучи состоят из положительно заряженных частиц - дважды ионизированных атомов гелия. Бета-лучи - это поток электронов. Гамма-лучи - высокоэнергетические фотоны.  
    Например, радий - излучает все три вида лучей, а стронций-90 - только бета. Для измерения радиоактивности наиболее часто используют кюри - 1 кюри - такое количество радиоактивного материала, что в нем происходит 3.7x1010 распадов в секунду (как в 1 г радия-226).

Внешнее облучение

 

    Внешнее облучение - это когда организм подвергается действию ионизирующего излучения, поступающего извне (короче говоря, человек  не проглотил в себя радиоактивные изотопы). Выше уже говорилось о неодинаковости биологического эффекта действия различных видов лучей.  
    Тяжелые и неповоротливые альфа-частицы создают вокруг себя огромное количество ионов, но именно благодаря этому, их пробег в воздухе составляет несколько сантиметров, а задерживаться они могут листом бумаги или верхним слоем эпидермиса.  
    Бета-излучение обладает большей проникающей способностью, но все равно способно воздействовать исключительно на ткани организма, прилегающие к коже (в зависимости от энергии электрона глубина его проникновения от 1 мм до 1 см) и то, только на неприкрытые одеждой участки. Дезактивация (простое смывание с себя попавших на кожу частичек радиоактивных веществ, стрижка волос) способна практически исключить влияние этого типа радиоактивности. Но все же, если облучения не удалось избежать, развиваются такие симптомы: на коже ощущается зуд и чувство жжения во время первых 24-48 часов. Затем это проходит, но через 2-3 недели появляется покраснение, усиливается пигментация кожи. Затем следует выпадение волос.  
    При легком и умеренном течении болезни страдают только верхние участки кожи. Образуется корка, которая сменяется здоровой кожей, окруженной зоной усиленной пигментации. Нормальная пигментация восстанавливается в течении нескольких недель.  
    В тяжелых случаях появляются глубокие язвы. Излечение занимает месяцы.  
    Еще одна опасность от бета-лучей может состоять в том, что тормозясь в какой-либо металлической пластине, электроны рождают рентгеновское излучение, обладающее большой проникающей способностью.  
    Гама-излучение имеет очень большую проникающую способность, из-за чего облучению подвергаются все ткани организма.

Внутреннее  облучение

 

    Внутреннее  облучение особо опасно - ведь в этом случае радиация действует изнутри непосредственно на клетки человека. Среди всех изотопов, находящихся в облаке взрыва, наибольший вред наносят изотопы углерода, йода, цезия и стронция.  
  
    I-131.  
    Йод-131 излучатель бета- и гамма-лучей с периодом полураспада 8.07 дней (активность 124 000 кюри/г). Его энергетика распада 970 кэВ, обычно распределена между 606 кэВ бета и 364 кэВ гамма. В следствии короткого времени жизни, йод представляет особую опасность в течении нескольких недель и опасность в несколько месяцев. Его удельное образование - примерно 2% от продуктов при взрыве бомбы деления - 1.6x10кюри/кт. Йод-131 легко поглощается телом, в особенности щитовидной железой, и может стать причиной ее рака.  
  
    Cs-137.  
    Цезий-137 испускает бета- и гамма-излучение, со временем полураспада 30 лет (активность 87 кюри/г). Энергетика распада - 1.176 МэВ делится на: 514 кэВ энергия бета-частицы, 622 кэВ энергия гамма-кванта. Образуется его примерно 200 кюри/кт. Он представляет опасность в первую очередь как долговременный источник сильного гамма-излучения.  
    Цезий, как щелочной металл, имеет некоторое сходство с калием и распределяется равномерно по всему телу. Он может выводиться из организма - период его полувыведения около 50-100 дней.  
  
    St-89 и St-90.  
    Стронций-90 излучает только бета-частицы с энергией 546 кЭв, имеет период полураспада 28.1 года (активность 141 кюри/г), стронций-89 аналогично испускает электроны с энергией 1.463 МэВ, период полураспада 52 дня (активность 28200 кюри/г). Их выход при взрыве составляет 190 кюри Sr-90 и 3.8x10Sr-89 на килотонну. Стронций-89 представляет опасность в течении нескольких лет после взрыва, стронций-90 остается в опасных концентрациях на столетия. Помимо излучение бета-частицы, распадающийся атом стронция-90 превращается в изотоп иттрия - иттрий-90, тоже радиоактивный, с периодом полураспада 64.2 часа, испускающего очень энергичный электрон при распаде - 2.27МэВ.  
    Поскольку стронций химически ведет себя подобно кальцию, он поглощается и накапливается в костях. Хотя большая его часть и выводится из организма (период полувыведения около 40 дней), чуть менее 10% стронция попадает в кости, период полувыведения из которых - 50 лет.  
    Безопасным считается содержание 2 микрокюри (14 нанограммов) стронция-90 в теле отдельного человека, а среднее его содержание у всех жителей не должно превышать 0.067 микрокюри. Это означает, что наличие 10 микрокюри Sr-90 в организме значительно увеличивает вероятность возникновения рака. Несколько тысяч испытанных мегатон в конечном итоге повысили содержание стронция в теле среднестатистического человека выше установленного предела для профессионального облучения на пару последующих поколений.  
  
    C-14 и T.  
    Изотопы углерод-14 и тритий (водород-3) не являются напрямую продуктами распада ядер тяжелых элементов. Они образуются при взрыве обычной атомной бомбы деления при взаимодействии испускаемых нейтронов с азотом воздуха:  
N14 + n -> T + C12  
N14 + n -> C14 + p  
Тритий источник очень слабого бета-излучения (18.6 кэВ - примерно как в электронной трубки телевизора), период полураспада 12.3 года (активность 9700 кюри/г).  
    Углерод-14 также испускает слабое бета-излучение - 156 кэВ, период полураспада - 5730 лет (активность 4.46 кюри/г). При взрыве его создается примерно 3.4 г на килотонну (15.2 кюри/кт). По некоторым оценкам, атмосферные испытания в течении 1950-60-х годов привели к выбросу в атмосферу дополнительно 1.75 тонны (7.75x10кюри) углерода-14. Для сравнения, до этого в природе находилось 1.2 тонны C-14: 1 т в атмосфере и 200 кг во всей биомассе планеты. Еще 50-80 тонн его были растворены в океане. Повышенные уровни этого изотопа обнаруживались в деревьях в течении 60-х годов.  
    C-14 и T - из-за того, что углерод и водород - основа белковой жизни, если такой радиоактивный элемент встроится в молекулу какого-либо белка, или ДНК, то распад его приведет к порче всей структуры молекулы. Поэтому попадание их в организм даже в незначительном количестве создает повышенную опасность мутаций.  
  
    Трансурановые источники альфа-излучения.  
    В ядерном оружии находятся заметные количества короткоживущих изотопов урана (U-232 и U-233) и трансурановые элементы Pu-239, Pu-240, Am-241. Из-за чрезвычайно большой ионизирующей способности альфа-частиц, при попадании внутрь эти элементы представляют собой серьезный риск для здоровья. Правда, после атомного взрыва их количество весьма невелико.  
    Если небольшая частичка попадает в легкие, она может остаться там и быть длительным источником облучения. Микрокюри альфа-излучателя производит облучение 3700 бэр/год легочной ткани, чрезвычайно увеличивая риск рака.  
    Уран и трансурановые элементы остеотропны (накапливаются в костной ткани). Если плутоний откладывается в костях, время его полувыведения около 80-100 лет, т.е. он остается там практически навсегда. Так же, плутоний накапливается в печени, с периодом полувыведения 40 лет. Максимальная допустимая концентрация Pu-239 в организме 0.6 микрограмма (0.0375 микрокюри) и 0.26 микрограмма (0.016 микрокюри) для легких.

Электромагнитный импульс

 

    Ядерный взрыв производит огромное количество ионизированных частиц, сильнейшие токи и электромагнитное поле, называемое электромагнитным импульсом (ЭМИ). На человека оно не оказывает никакого влияния (по крайней мере в пределах изученного), зато повреждает электронную аппаратуру. Большое количество ионов, оставшихся после взрыва, мешает коротковолновой связи и работе радаров.  
    На образование ЭМИ очень значительное влияние оказывает высота взрыва. ЭМИ силен при взрыве на высотах ниже 4 км, и особенно силен при высоте более 30 км, однако менее значителен для диапазона 4-30 км. Это происходит из-за того, что ЭМИ образуется при несимметричном поглощении гамма-лучей в атмосфере. А на средних высотак как раз такое поглощение происходит симметрично и равномерно, не вызывая больших флуктуаций в распределении ионов.  
    Зарождение ЭМИ начинается с чрезвычайно короткого, но мощного выброса гамма-лучей из зоны реакции. На протяжении ~10 наносекунд в виде гамма-лучей выделяется 0.3% энергии взрыва. Гамма-квант, сталкиваясь с атомом какого-либо газа воздуха выбивает из него электрон, ионизируя атом. В свою очередь этот электрон сам способен выбить своего собрата из другого атома. Возникает каскадная реакция, сопровождающаяся образованием до 30 000 электронов на каждый гамма-квант.  
    На низких высотах, гамма-лучи, испущенные по направлению к земле, поглощаются ею, не производя большого количества ионов. Свободные электроны, будучи гораздо легче и проворнее атомов, быстро покидают область, в которой они зародились. Образуется очень сильное электромагнитное поле. Это создает очень сильный горизонтальный ток, искру, рождающую широкополосное электромагнитное излучение. В то же время, на земле, под местом взрыва, собираются электроны "заинтересовавшиеся" скоплением положительно заряженных ионов непосредственно вокруг эпицентра. Поэтому сильное поле создается и вдоль Земли.  
 
И хотя в виде ЭМИ излучается очень незначительная часть энергии - 1/3x10-10, это происходит за очень короткий промежуток времени. Так что мощность, развиваемая им огромна: 100 000 МВт.  
    На больших высотах происходит ионизация расположенных ниже плотных слоев атмосферы. На космических высотах (500 км) область такой ионизации достигает 2500 км. Максимальная ее толщина - до 80 км. Магнитное поле Земли закручивает траектории электронов в спираль, образуя мощный электромагнитный импульс на несколько микросекунд. В течении нескольких минут между поверхностью Земли и ионизированным слоем возникает сильное электростатическое поле (20-50 кВ/м), пока большая часть электронов не будет поглощена вследствие процессов рекомбинации. Хотя пиковая напряженность поля при высотном взрыве составляет всего 1-10% от наземного, на образование ЭМИ уходит в 100 000 больше энергии - 1/3x10-5 всей выделившейся, напряженность остается примерно постоянной под всем ионизированным районом.  
    Воздействие ЭМИ на технику. Сверхсильное электромагнитное поле индуцирует высокое напряжение во всех проводниках. ЛЭП будут фактически являться гигантскими антеннами, наведенное в них напряжение вызовет пробой изоляции и выход из строя трансформаторные подстанции. Выйдет из строя большинство специально не защищенных полупроводниковых приборов. В этом плане большую фору микросхемам даст старая добрая ламповая техника, которой нипочем ни сильная радиация, ни сильные электрические поля.


Информация о работе Поражающие факторы ядерного взрыва