Ультразвуковая дефектоскопия

Автор работы: Пользователь скрыл имя, 11 Октября 2015 в 20:04, реферат

Описание работы

Ультразвукова́я дефектоскопи́я — поиск дефектов в материале изделия ультразвуковым методом, то есть путём излучения и принятия ультразвуковых колебаний, и дальнейшего анализа их амплитуды, времени прихода, формы и пр. с помощью специального оборудования — ультразвукового дефектоскопа.

Содержание работы

Введение……………………………………………………….…….3
Классификация методов исследования…….……………….......4
Заключение.......................................................................................13
Список источников.........................................................................14

Файлы: 1 файл

реферат по мс и с.docx

— 144.45 Кб (Скачать файл)

Преимущества

Ультразвуковое исследование не разрушает и не повреждает исследуемый образец, что является его главным преимуществом. Возможно проводить контроль изделий из разнообразных материалов, как металлов, так и неметаллов. Кроме того можно выделить высокую скорость исследования при низкой стоимости и опасности для человека (по сравнению с рентгеновской дефектоскопией) и высокую мобильность ультразвукового дефектоскопа

Ультразвуковой контроль изделий в ГДР, 1977 год

.

Недостатки


Использование пъезоэлектрических преобразователей требует подготовки поверхности для ввода ультразвука в металл, в частности создания шероховатости поверхности не ниже класса 5, в случае со сварными соединениям ещё и направления шероховатости (перпендикулярно шву). Малейший воздушный зазор может стать неодолимой преградой. Для устранения воздушного зазора, на контролируемый участок изделия предварительно наносят контактные жидкости, такие как вода, масло, клейстер. При контроле вертикальных или сильно наклоненных поверхностей необходимо применять густые контактные жидкости с целью предотвращения их быстрого стекания.

Для контроля изделий с внешним диаметром менее 200мм, необходимо использовать преобразователи, с радиусом кривизны подошвы R, равным 0,9-1,1R радиуса контролируемого объекта, так называемые притертые преобразователи, которые в таком виде непригодны для контроля изделий с плоскими поверхностями. Например для контроля цилиндрической поковки, необходимо производить перемещение преобразователя в двух взаимно перпендикулярных направлениях, что подразумевает под собой использование двух притёртых преобразователей - по одному для каждого из направлений.

 

 

 

 

 

 

 

 

Заключение

Как правило ультразвуковая дефектоскопия не может дать ответ на вопрос о реальных размерах дефекта, лишь о его отражательной способности в направлении приемника. Эти величины коррелируют, но не для всех типов дефектов. Кроме того, некоторые дефекты практически невозможно выявить ультразвуковым методом в силу их характера, формы или расположения в объекте контроля.

Практически невозможно производить достоверный ультразвуковой контроль металлов с крупнозернистой структурой, таких как чугун или аустенитный сварной шов (толщиной свыше 60 мм)[1][2] из-за большого рассеяния и сильного затухания ультразвука. Кроме того, затруднителен контроль малых деталей или деталей со сложной формой.

Применение


Ультразвуковой дефектоскоп для контроля железнодорожных рельс

Применяется для поиска дефектов материала (поры, волосовины, различные включения, неоднородная структура и пр.) и контроля качества проведения работ — сварка, пайка,склейка и пр. Ультразвуковой контроль является обязательной процедурой при изготовлении и эксплуатации многих ответственных изделий, таких как части авиационных двигателей, трубопроводы атомных реакторов или железнодрожные рельсы.

Ультразвуковой контроль сварных швов


Сварные швы являются самой массовой областью применения ультразвуковой дефектоскопии. Это достигается за счёт мобильности ультразвуковой установки, высокой производительности контроля, высокой точности, высокой чувствительности к любым внутренним (объёмным - поры, металлические и неметаллические включения; плоскостным - непровары, трещины), а также внешним, т.е. поверхностным дефектам сварных швов (подрезы, обнижения валика усиления и т.п.).

Многие ведомственные документы подразумевают обязательный ультразвуковой контроль сварных швов, либо альтернативный выбор ультразвукового или радиационного контроля, либо контроль обоими методами.

Основным документом в России по ультразвуковому контролю сварных швов является ГОСТ 14782-86, в котором рассмотрены в полном объёме методы контроля стыковых, тавровых, нахлесточных и угловых сварных швов, выполненных различными способами сварки. Также в нём подробно описаны стандартные образцы (эталоны) СО-1, СО-2 (СО-2А), СО-3 и СО-4 и стандартные образцы предприятия, необходимые для настройки дефектоскопа, а также их параметры для их изготовления.

Объёмы контроля и нормы оценки качества сварного соединения устанавливаются различными нормативными документами в соответствии с требованиями прочности к конкретной сварной конструкции. На предприятиях, изготавливающих особо ответственные изделия, а также различными надзорными органами могут выпускаться собственные методические материалы для оценки качества сварных швов. Примером может служить РД РОСЭК-001-96, разработанный Ростехнадзором для оценки качества сварных соединений для грузоподъёмных машин.

 

Дефектоскоп

Дефектоско́п (лат. defectus недостаток + гр. ςκοπεω наблюдаю) — устройство для обнаружения дефектов в изделиях из различных металлических и неметаллических материалов методами неразрушающего контроля. К дефектам относятся нарушения сплошности или однородности структуры, зоны коррозионного поражения, отклонения хим. состава и размеров и др. Область техники и технологии, занимающаяся разработкой и использованием дефектоскопов называется дефектоскопия. С дефектоскопами функционально связаны и другие виды средств неразрушающего контроля: течеискатели,  толщиномеры, твердомеры, структуроскопы, интроскопы и стилоскопы.

Применение


Дефектоскопы используются в транспорте, различных областях машиностроения, химической промышленности, нефтегазовой промышленности, энергетике, строительстве, научно-исследовательских лабораториях для определения свойств твердого тела и молекулярных свойств и в других отраслях; применяются для контроля деталей и заготовок, сварных, паяных и клеевых соединений, наблюдения за деталями агрегатов. Некоторые дефектоскопы позволяют проверять изделия, движущиеся со значительной скоростью (например, трубы в процессе прокатки), или сами могут передвигаться с большой скоростью относительно изделия (например, рельсовые дефектоскопы, тележки и вагоны-дефектоскопы). Существуют дефектоскопы для контроля изделий, нагретых до высокой температуры.

Импедансные дефектоскопы

Принцип работы основан на определении отличия полного механического сопротивления (импеданса) дефектного участка по сравнению с доброкачественным, для чего контролируемая поверхность сканируется с помощью двух пьезоэлементов, один из которых возбуждает колебания в материале, а другой воспринимает колебания. Импедансные дефектоскопы предназначены для обнаружения дефектов, расслоений, непроклеев, пористости и нарушения целостности композитных материалов и сотовых структур в авиастроении, космической, автомобильной и других отраслях промышленности.

Резонансные дефектоскопы

Резонансный метод основан на определении собственных резонансных частот упругих колебаний (частотой 1—10 МГц) при возбуждении их в изделии. Этим методом измеряют толщину стенок металлических и некоторых неметаллических изделий. При возможности измерения с одной стороны погрешность измерения — около 1 %. Кроме того, при помощи резонансной дефектоскопии можно выявлять зоны коррозионного поражения. Вариантом резонансного метода является спектрально-акустическая дефектоскопия.

Другие методы акустической дефектоскопии

  • Реверберационный метод основан на анализе времени объемной реверберации — процесса постепенного затухания звука в некотором объеме — контролируемом объекте.
  • Акустико-эмиссионный метод контроля основан на приеме и анализе волн акустической эмиссии, возникающих в изделии при развитии трещин в процессе его нагружения.
  • Велосиметрический метод эходефектоскопии основан на измерении изменения скорости распространения упругих волн в зоне расположения дефектов в многослойных конструкциях, используется для обнаружения зон нарушения сцепления между слоями металла.
  • Акустико-топографический метод основан на возбуждении в контролируемом изделии мощных изгибных колебаний заданной (в первом варианте метода) или непрерывно меняющейся (во втором варианте) частоты с одновременной визуализацией картины колебаний поверхности изделия, напр., путём нанесения на эту поверхность тонкодисперсного порошка. При достаточно сильных колебаниях поверхности изделия с заданной частотой частицы порошка из мест, не принадлежащих узлам, постепенно смещаются к узлам колебаний, рисуя картину распределения узловых линий на поверхности — т. н. фигуры Хладни. Для бездефектного изотропного материала эта картина получается чёткой и непрерывной. Если же в материале имеется дефект, то в зоне дефекта картина меняется: узловые линии искажаются в месте наличия включений, а также на участках, характеризующихсяанизотропией механич. свойств, или прерываются при наличии расслоения. Если используется второй вариант метода, то при наличии расслоения находящийся над ним участок верхнего слоя изделия рассматривается как колеблющаяся, закреплённая по краю диафрагма; в момент резонанса, то есть совпадения частоты возбуждения с собственной частотой этой диафрагмы, амплитуда её колебаний резко возрастает, и частицы порошка перемещаются к границам дефектной зоны, оконтуривая её с большой точностью. Работа ведётся на частотах 30—200 кГц. Чувствительность метода весьма высока: в многослойном изделии (напр., биметал-лич. или триметаллич. лист) с толщиной верхнего листа 0,25 мм обнаруживаются дефекты протяжённостью 1 —1,5 мм. Мёртвая зона отсутствует, сканирование не требуется — излучатель прижимается к поверхности изделия в одной точке.

 

 

 

 

 

 

 

 

 

 

 

Список литературы

1.Клюев В.В. Неразрушающий контроль. Том 3.: Справочник. В 7-и книгах / Под ред. Клюева В.В. — М. Машиностроение 2004

2.Гурвич А. К., Ермолов И. Н. Ультразвуковая дефектоскопия сварных швов — Киев: Техшка, 1972

3.Выборнов Б. И. Ультразвуковая дефектоскопия - М.: Металлургия, 1985

    4.ссылка: http://ru.wikipedia.org/wiki ультразвуковая дефектоскопия.

 

 

 


Информация о работе Ультразвуковая дефектоскопия