Экстракционные препараты из лекарственного и растительного сырья

Автор работы: Пользователь скрыл имя, 08 Января 2014 в 14:03, курсовая работа

Описание работы

Из лекарственного растительного сырья наиболее часто приготавливают водные извлечения. В различных источниках литературы приводятся многочисленные методики изготовления настоев [3,4,5,6,]. Однако в доступной литературе данных о влиянии факторов технологического процесса на качество водных извлечений не имеется.
Целью настоящей работы являлось сравнение различных режимов настаивания при приготовлении водных извлечений из плодов фенхеля, кориандра, зверобоя, тысячелистника, цветов ромашки и сборов, в состав которых входит это лекарственное растительное сырье. Это не только представляет научный интерес, но и имеет практическое значение в плане определения наиболее эффективного способа настаивания лекарственного растительного сырья.

Файлы: 1 файл

производства жидких экстракционных препаратов.doc

— 199.00 Кб (Скачать файл)


 

 

 

 

 

 

КУРСОВАЯ РАБОТА

на тему:

«Экстракционные препараты из лекарственного и растительного сырья»

 

ОГЛАВЛЕНИЕ

 

 

 

ВВЕДЕНИЕ.

 

Эффективность лекарственных  трав при различных болезнях проверяли народные лекари веками и тысячелетиями. Драгоценный опыт врачевания и в настоящее время изучается и творчески используется учеными и врачами при поиске лекарственных растений и создании на их основе препаратов. Так, в Болгарии в аптеках постоянно продается более 150 видов различных трав и лекарственных сборов. Обширный ассортимент лекарственного растительного сырья своим клиентам предлагают аптеки и специализированные магазины Польши, Германии.

Актуальность использования  лекарственных растений  возросла в последнее десятилетие. Преимущество их перед многими синтетическими препаратами - в комплексном воздействии на организм больного при минимальных побочных и аллергических реакциях.

Из лекарственного растительного сырья  наиболее часто приготавливают водные извлечения. В различных источниках литературы приводятся многочисленные методики изготовления настоев [3,4,5,6,]. Однако в доступной литературе данных о влиянии факторов технологического процесса на качество водных извлечений не имеется.

Целью настоящей работы являлось сравнение различных режимов настаивания при приготовлении водных извлечений из плодов фенхеля, кориандра, зверобоя, тысячелистника, цветов ромашки и сборов, в состав которых входит это лекарственное растительное сырье. Это не только представляет научный интерес, но и имеет практическое значение в плане определения наиболее эффективного способа настаивания лекарственного растительного сырья.

 

1. ЛИТЕРАТУРНЫЙ ОБЗОР.

1.1. Растворы водные (Solutiones).

 

Растворы – жидкая лекарственная форма, полученная путём растворения жидких, твердых или газообразных веществ в соответствующем растворителе, предназначенная для внутреннего, наружного или парентерального применения. Растворы являются самой обширной группой среди жидких лекарственных форм. В биофармацевтическом отношении преимущества растворов состоят в следующем:

  • лекарственные вещества из растворов быстрее всасываются и оказывают резорбтивное действие;
  • исключается раздражающее действие на слизистые оболочки, которое имеет место при приеме твердых лекарственных форм;
  • удобство приема;
  • простота изготовления.

Вместе с тем растворы имеют ряд недостатков, касающиеся, прежде всего нестабильности при хранении, неприятного вкуса некоторых растворов, громоздкости упаковки и др.

Растворение является основной стадией изготовления растворов. Растворимость различных веществ различна. Существует таблица в ГФ ХI, характеризующая растворимость лекарственных веществ в зависимости от количества растворителя в условных терминах.

Кроме того, растворимость зависит от температуры: для большинства веществ с ее повышением растворимость некоторых лекарственных веществ с повышением температуры не увеличивается, а даже снижается (нелетучие вещества, газы). Чаще всего руководствуются при растворении старинным правилом «Similia similibus solventur», т.е. подобное растворяется в подобном. Например, полярные вещества (т.е. вещества, содержащие функциональные группы ОН, СО, СОН, СООН, NН2), растворяются в полярных растворителях, а неполярные вещества (строго симметричной структуры без электронных полюсов – скипидар, парафин и др.) – в неполярных растворителях. При растворении твердых веществ можно условно выделить следующие стадии:

  • контактирование поверхности твердого тела с растворителем, сопровождающиеся смачиванием, адсорбцией и проникновением  растворителя в микропоры частиц твердого тела;
  • взаимодействие молекул растворителя со слоями вещества на поверхности раздела фаз, сопровождающееся сольватацией молекул или ионов и их отрывом;
  • переход сольватированных  молекул или ионов в жидкую фазу;
  • выравнивание концентраций во всех слоях растворителя.

При растворении разрушаются  связи между молекулами или ионами в растворяемом веществе и растворителе, что связано с затратой энергии. Например разрушение кристаллической решетки при растворении многих кристаллогидратов требует затрат энергии; происходит процесс комплексообразования, т. е. возникают новые связи между молекулами и ионами, образуются сольваты. Процесс сопровождается выделением энергии. Общее энергетическое изменение в системе  может быть положительным или отрицательным. Некоторые лекарственные вещества, особенно крупнокристаллические, хотя и обладают довольно высокой растворимостью, растворяются медленно (сульфат меди, кислота борная, квасцы, магния сульфат и др). Для ускорения процесса растворения используют такие приемы, как нагревание, предварительное измельчение, перемешивание. Растворимость отдельных лекарственных веществ резко повышается за счет введения других веществ, способствующих их растворению. Например, растворимость кристаллического йода резко повышается за счет образования с калием йодидом комплекса К[I3] [7].

 

1.2. Частная технология водных растворов.

 

Изготовление растворов проводят по следующим правилам: сначала отмеривают рассчитанное количество воды, в которой последовательно растворяют твердые лекарственные вещества с учетом их растворимости. Первыми растворяют вещества списков А и Б, затем труднорастворимые вещества, затем легкорастворимые.

Концентраты добавляют  после растворения и фильтрации твердых веществ.

Для повышения растворимости  могут использовать предварительное  измельчение, нагревание, комплексообразование (например, образование комплекса йода с калия йодидом).

Жидкие лекарственные  средства вводят в следующей последовательности:

  • водные нелетучие и непахучие жидкости;
  • иные нелетучие жидкости, смешивающиеся с водой;
  • водные летучие жидкости;
  • спиртовые препараты в порядке возрастания концентрации спирта;
  • летучие и пахучие.

Нагревание применяют для вязких  растворителей (глицерин, масла) с учетом физико-химических свойств веществ. Спиртовые и хлороформные растворы нагревают только в случае необходимости и осторожно. Растворы, содержащие летучие вещества (камфора, ментол, эфирные масла), нагревают до температуры не более 40-450С.

В отличие от водных неводные растворители (спирт, масла, глицерин) отвешивают в сухой флакон с находящимися там лекарственными и вспомогательными веществами.

Густые вещества (ихтиол, глицерин, густые экстракты) предварительно размешивают в ступке с частью растворителя.

Объем микстуры определяют суммированием  объемов жидких ингредиентов. Если в состав микстуры входит жидкость, выписанная по массе, ее объем определяют с учетом плотности (V= M/p).

Если в рецепте указано ad – до определенного объема, объем будет равен указанному количеству (например, ad 200ml).

Растворы – жидкие гомогенные системы, в которых одно или несколько веществ равномерно распределены в среде другого. В зависимости от растворителя различают растворы водные, спиртовые, глицериновые,  Масляные (Solutiones aquosae, spurituosae, qlycerinosae, oleosae). К растворам также относятся сиропы и воды ароматные.

Большинство растворов  готовят растворением лекарственных  веществ в соответствующем растворителе. Некоторые водные растворы изготовляют при помощи химических взаимодействий.

Растворение осуществляют в реакторах, герметически закрытых аппаратах, снабженных мешалкой и паровой рубашкой. При использовании вязких растворителей растворение часто проводят при повышенной температуре для уменьшения вязкости и увеличения скорости диффузии (растворы кислоты борной, буры в глицерине, камфоры в масле и др.).

Спиртовые растворы готовят  без нагревания со строгим соблюдением  правил по технике безопасности, охране труда и противопожарной защите.

Очистка растворов осуществляется путем отстаивания и фильтрования.  Применяют фильтры, работающие при атмосферном давлении, избыточном давлении и под вакуумом.

Стандартизуют растворы по концентрации действующих веществ, плотности, содержанию этанола в спиртовых растворах.

Концентрацию растворов определяют физико-химическими методами анализа и выражают в процентах по массе или массообъемных процентах.

Плотность жидкостей  определяют ареометром или пикнометром.

 

1.3. Экстракционные препараты из лекарственного растительного сырья.

 

В современных условиях мировая фармация все более склонна  к созданию лекарственных препаратов из природных объектов, как более безвредных, а зачастую и более эффективных. Фитопрепараты представляют собой композиции лекарственного растительного сырья или извлечений из него более или менее сложного состава. Фитопрепараты прошли сложный путь развития от вытяжек из растений до, полученных с помощью вина, масел, меда, жиров-экстрагентов эпохи римского врача Клавдия Галена (131- 201 гг.н.э.), до извлечений, полученных с помощью спирта этилового, который внедрил в медицинскую практику Парацельс  (16 в.), актуальных и в настоящее время. Открытие алхимиком Раймондом Луллием (1235- 1315г) спирта внесло значительное оживление в технологию фитопрепаратов. Именно вводно-спиртовые извлечения, называемые настойками и экстрактами, получают дальнейшее развитие и занимают прочное место в современном каталоге фитопрепаратов.

Суммарные неочищенные  фитопрепараты получили название «галеновые препараты» по фамилии знаменитого римского врача Клавдия Галена, спустя 13 веков после его смерти. На рубеже 19-20 вв. появились новые фитопрепараты, представляющие собой суммарные препараты, максимально очищенные от сопутствующих веществ. В связи с этим действие их на организм имеет свои особенности. Эта группа фитопрепататов получила название новогаленовых.

В середине 20 в. было освоено промышленное производство лекарственных препаратов, представляющих собой индивидуальные природные вещества. Это стало возможным благодаря большим достижениям в области химии, физики, фармацевтической технологии, фармакологии и других научных дисциплин.

Современная номенклатура фитопрепаратов представлена тремя группами: суммарными неочищенными (настойки и экстракты), суммарными максимально очищенными и индивидуальными веществами [7].

1.4. Теоретические основы экстрагирования.

 

Процесс экстрагирования относится к массообменным и определяется основными законами массопередачи: молекулярной диффузией, массоотдачей, и массопроводимостью. При экстрагировании лекарственного растительного  сырья процесс массопередачи происходит в системе твердое тело- жидкость.

Экстрагирование лекарственного растительного материала в отличие  от других твердых тел имеет много  особенностей, связанных с его  клеточной структурой и физико-механическими свойствами. Биологически активные вещества заключены в клетках, экстрагент должен проникнуть в них, преодолев клеточный барьер. Процесс экстрагирования различен для свежего и высушенного сырья. В свежем сырье действующие вещества находятся внутри клетки, в высушенном – в виде сухих конгломератов на стенках клетки или порах. Этим обусловлен разный подход к экстрагированию материала: из свежего сырья – он сводится к вымыванию клеточного сока из разрушенных клеток. Живая клетка, пристенный слой которой плотно прижат к оболочке, находится в состоянии тургора. Через клеточные мембраны чистый экстрагент проникает внутрь клетки, биологически активные вещества покинуть клетку могут только при активном транспорте. Диффузии через клеточные мембраны не наблюдается.

При высушивании лекарственного растительного  материала клетка меняет свои свойства – она переходит в состояние плазмолиза. Клеточные мембраны теряют полупроницаемость и приобретают свойства пористой перегородки, в которой насчитывается до 20000 и более пор диаметром от 0,2-0,3мм до десятков нанометров. Процесс экстрагирования приобретает при этом характер диализа через пористую мембрану. Процесс экстрагирования высушенного сырья является многостадийным и начинается с проникновения экстрагента в материал.

Оболочки клеток обладают дифильными свойствами, с преобладанием  гидрофильности. Процесс проникновения  экстрагента в клетку определяется степенью гидрофильности материала, природой экстрагента, числом и размером пор в клеточной стенке. При этом лекарственное растительное сырье имеет капиллярно- пористую структуру. Чем больше сродство экстрагента к материалу, тем он быстрее смачивает стенки капилляров и быстрее проникает в материал, поступая макро- и микротрещинам, межклеточным ходам, диффузией через поры клеточной оболочки. При этом часть экстрагента поглощается клеточными структурами, состоящими из целлюлозы и других ВМВ, происходит увеличение объема материала - набухание. Одновременно идет образование внутреннего клеточного сока - экстрагент проникает внутрь клетки, контактирует сырья высохшим клеточным соком. Наблюдаются процессы растворения, десорбции и вымывания содержимого клеток. Продолжительность процесса зависит от морфологических особенностей лекарственного растительного сырья и длится в среднем 2-4 часа.

Информация о работе Экстракционные препараты из лекарственного и растительного сырья