Эхокардиография-узи сердца

Автор работы: Пользователь скрыл имя, 10 Мая 2014 в 17:54, реферат

Описание работы

Современные успехи клинической диагностики во многом определяются совершенствованием методов исследования. Значительный скачек в этом вопросе был достигнут благодаря разработке и внедрению в практику принципиально новых способов получения медицинского изображения, в том числе ультразвукового метода. Чрезвычайно ценным является способность эхографии визуализировать внутреннюю структуру паренхиматозных органов, что было недоступно традиционному рентгенологическому исследованию

Содержание работы

Введение
Глава Ι. Обзор литературы
Глава ΙΙ. Материалы и методы исследования
Глава ΙΙΙ. Результаты и обсуждения
Заключение
Список литературы

Файлы: 1 файл

Ультразвуковые исследования в гинекологии.doc

— 194.50 Кб (Скачать файл)

Звукопроводимость отражает способность ультразвука распространяться на глубину. Она зависит от поглощающей, отражающей и рассеивающей способности среды. Наиболее высокой звукопроводимостью обладают жидкостные образования. Характерным признаком высокой звукопроводимости является усиление и повышение эхогенности дальнего контура образования и расположенных за ним структур. Следует отметить, что наличие акустического окна, создаваемого жидкостным образованием, значительно облегчает визуализацию расположенных за ним анатомических структур. При очень низкой звукопроводимости дальний контур образования вообще не просматривается, а непосредственно за ним возникает анэхогенная зона, или так называемая акустическая тень. В основном это также наблюдается при наличии очень плотных структур, таких как камень, кальцификаты. В этих случаях звукопроводимость снижается вследствие как выраженного поглощения, так и отражения ультразвуковых волн. [3]

Воздействие ультразвука на биологические объекты приводит к различным эффектам – механическому, термическому и физико-химическому. Прежде всего влияние ультразвука прoявляется тем, что частицы тканей начинают совершать интенсивные колебательные движения. При малой интенсивности эти колебания обуславливают своеобразный массаж структурных элементов ткани, что способствует улучшению обмена веществ. [5]

При увеличении интенсивности звука его энергия начинает преобразовываться в тепловую. Нагрев ткани на доли и единицы градуса, как правило, повышает жизнедеятельность биологических объектов. Однако значительное увеличение интенсивности ультразвука и времени его воздействия приводит к перегреву тканей и их разрушению вследствие кавитации – явления, связанного с периодическим изменением давления акустической волны. В фазе разряжения происходит своеобразный разрыв тканей с образованием пузырьков газа, растворенного в жидкости, что сочетается с выраженным местным повышением температуры. Под воздействием температуры могут возникать физико-химические эффекты, изменение pH среды, расщепление высокомолекулярных соединений и т.п. Таким образом, действие ультразвука может быть как терапевтическим, так и разрушающим. [5]

Виды УЗ датчиков

УЗ датчики представляют собой сложные устройства и делятся:

Линейные датчики. Срезы при использовании таких датчиков имеют форму прямоугольников. Эти датчики наиболее удобны в акушерских следованиях, а также при исследовании щитовидной и молочной желез [6]

Секторные датчики. Срезы имеют форму почти треугольного веера. Эти датчики удобно использовать при наличии очень небольшого по площади, доступного для исследования пространства. Они используются для исследования верхних отделов брюшной полости, а также в гинекологии и кардиологии. [6]

Конвексные датчики. Получаемый срез имеет форму промежуточную между формой среза линейного и секторного датчиков и используется для сканирования всех частей тела, кроме эхокардиографии. [6]

Различные режимы представления информции

Различные режимы представления информации изображают отражённые сигналы различными способами.

  1. А-режим. При работе в А-режиме отражённые сигналы изображаются в виде пиков (см. рис. 1), при этом можно измерить расстояние между двумя различными структурами. Сама структура в этом режиме не изображается, это простейший режим отображения эха (амплитудный режим). В данном режиме эхо с различной глубины отображается в виде всплесков на осевой линии. Сила эха определяет высоту или амплитуду каждого из пиков. А-режим дает только одномерное изображение и крайне редко используется в диагностике. Используется в офтальмологии для точной биометрии глазных структур, в неврологии для получения эхоэнцефалограмм. [6]

 

Рис.1. Срез в А-режиме: расположение пиков показывает глубину расположения отражающей структуры. Высота пика определяет интенсивность отраженного сигнала.

 

  1. В-режим — наиболее распространенный режим. В этом формате получается двухмерное изображение, которое представляет собой томографический срез тела пациента (см. рис. 2). Яркость каждой точки изменяется в зависимости от силы отраженного эха. Принятый сигнал преобразуется, что позволяет изображать его на телемониторе. Акустическое изображение воспроизводит геометрические формы внутренних структур. Быстрое чередование периодов излучения и приема позволяет получать изображение в реальном времени. В современных ультразвуковых сканерах используется серая шкала, количество оттенков серого цвета которой достигает 256 градаций. В-режим применяется для диагностики состояний паренхиматозных и полых органов, головного мозга, сердца, мягких тканей и др. При этом по вертикали фиксируются эхосигналы, отраженные от структур, расположенных вдоль оси луча, а по горизонтали - перпендикулярно к нему. [6]

 

Рис.2. Срез в В-режиме: эхосигналы определяются в виде ярких точек, показывающих положение отражающей структуры в двумерном изображении.

 

  1. D-Режим – спектральный допплер, средство неинвазивного исследования характеристик движения тканей (скорость, частота, амплитуда). В основе метода лежит эффект Допплера, который состоит в том, что частота излучаемых и принимаемых волн отличаются, если в приемник поступают сигналы после отражения от движущегося объекта. [6]
  2. СDК-Режим — цветовое допплеровское картирование. Получение информации о направлении и скорости кровотока в виде окрашивания потока в красные или синие тона. [6]
  3. М-Режим – более сложный режим отображения эха. На таком изображении ось глубины ориентируется вертикально, а на горизонтальной оси показывается расположение отраженных импульсов в определенные промежутки времени. (См. рис. 3) Эхосигналы показываются в виде точек,эти яркие точки перемещаются по экрану слева направо, создавая тем самые кривые, показывающие изменение положения отражающих структур с течением времени. Данный метод особенно популярен в кардиологии для показа изменения положения сердца и сосудов. [6]

 

Рис.3. Срез в режиме М: движение части тела – сердца плода – представлена как функция времени.

 

  1. РD-Режим – модификация режима СDК, отличается тем, что позволяет повысить чувствительность метода к низким скоростям, сделать его уголнезависимым, ценой потери возможности определения абсолютного значения скорости и направления потока. [6]
  2. 3D-Режим – получение объемного изображения. В этом режиме используется возможность запоминания нескольких кадров изображения. На основе полученных кадров реконструируется трехмерное изображение, которое можно поворачивать и наблюдать с разных сторон. [6]

Исследование начинается с двумерного режима. Затем для получения одномерного изображения необходимой структуры устанавливают на нее курсор (линия, появляющаяся на двумерном изображении от верхушки сектора до его основания) и переходят в одномерный режим. Изучение внутрисосудистых и внутрисердечных потоков крови осуществляется в дуплекс-режиме (сочетание двумерного и допплеровского режимов) с помощью подвижной метки на линии курсора, указывающей положение контролируемого объема. Каждый из этих режимов имеет свои преимущества. Двумерная эхокардиография дает пространственную ориентацию, однако такие измерения, как толщина стенок, фазовый анализ сердечной деятельности значительно проще и точнее проводить в одномерном режиме. Измерение фаз сердечной деятельности можно проводить и при записи внутрисердечных потоков с помощью допплерэхокардиографии. Этот режим дает более широкие возможности для изучения фазовой структуры сердечной деятельности – он позволяет рассчитывать фазу ускорения и фазу замедления потоков, которые нельзя рассчитать с помощью других методик. [1]

Электронная обработка сигналов проводится по-разному, в зависимости от режима работы прибора. В “М-режиме” регистрируются структуры, расположенные по ходу луча, т. е. очерчиваются осциллограммы движения структур в строгом порядке их глубинного залегания. Это происходит благодаря движению подающегося с электронной трубки сигнала на экран слева направо или справа налево, при этом записываются только те движения, которые совершаются параллельно направлению ультразвукового пучка. Латеральные движения не записываются, Акустически более плотные структуры отражаются на экране в виде более ярких графиков, а менее плотные менее ярких, что позволяет дифференцировать эти структуры, измерять их размеры. [6]

В двумерном режиме пучок ультразвуковых волн распространяется от датчика и возвращается к нему не по линии, как в предыдущем режиме, а в плоскости, т. е. имеет длину и ширину. Это позволяет ультразвуку проходить через структуры, находящиеся на разных глубинах и на одной и той же глубине. Эти структуры в зависимости от их акустической плотности регистрируются на экране в виде движущихся точек разной яркости. Помимо вертикального движения, свойственного одномерному режиму, в двумерном режиме точки движутся и по горизонтали, т. е записывается боковое движение точек. На экране эти точки появляются с частотой более 30 раз в секунду. Все это создает условия для регистрации среза структур органа в реальном масштабе времени. Необходимо отметить, что отражение ультразвука зависит не только от акустической плотности ткани, но и от угла падения его на структуру. Лучше всего ультразвук отражается при его вертикальном падении, так как при этом создаются оптимальные условия для увеличения разности яркости точек, т.е. границы структур лучше отделяются друг от друга, что создает оптимальные условия для исследования органа. [6]

При отражении от движущихся структур ультразвук меняет свою частоту. Изменение частот зависит от скорости движения объекта и угла падения ультразвука по отношению к движущемуся объекту. При уходящем от датчика движении частота отраженного ультразвука по сравнению с посылаемым уменьшается, т. е. изменение частот будет отрицательным, а при движении объекта навстречу датчику частота отраженного ультразвука увеличивается, и изменение частот будет положительным. При увеличении угла между пучком ультразвука и движущимся объектом от 0° до 90о изменение частот уменьшается до нуля, т. е. при перпендикулярном падении ультразвука изменения частот не происходит, а при параллельном направлении пучка ультразвука по отношению к движущемуся объекту оно максимально. [6]

УЗИ в акушерстве

УЗИ считается одним из наиболее информативных методов исследования в акушерстве.

Ι. Области применения УЗИ.

A. Фетометрия – это определение размеров плода или его отдельных частей посредством УЗИ. Метод позволяет уточнить гестационный возраст и вес плода. Оценку фетометрических показателей с учетом данных анамнеза и физикального исследования (даты последней менструации и высоты стояния дна матки) используют для диагностики нарушений внутриутробного развития. [4]

Б. Диагностика пороков развития. Современная ультразвуковая аппаратура позволяет диагностировать даже незначительные пороки развития ЖКТ, скелета, мочевых путей, половых органов, сердца и ЦНС. УЗИ используют также для определения локализации плаценты и диагностики многоплодной беременности. [4]

B. Оценка состояния плода. С помощью УЗИ оценивают биофизический профиль плода и объем околоплодных вод. Использование УЗИ для пренатальной диагностики привело к снижению перинатальной смертности. Допплеровское исследование дает возможность оценить функцию сердечнососудистой системы плода и плацентарное кровообращение. [4]

Г. Контроль при инвазивных исследованиях. УЗИ используют при амниоцентезе, биопсии хориона и кордоцентезе. Кроме того, УЗИ применяют для диагностики внематочной беременности при кровянистых выделениях из половых путей и боли внизу живота на ранних сроках беременности. [4]

ΙΙ. Общая характеристика УЗИ

Цели УЗИ. Согласно бюллетеню Американского общества акушеров и гинекологов в зависимости от целей УЗИ во время беременности выделяют два его вида – стандартное и прицельное.

1)При стандартном УЗИ оценивают следующие параметры и показатели.

•Описание содержимого матки. Определяют количество и положение плодов, локализацию плаценты, проводят примерную оценку объема околоплодных вод (при многоплодной беременности – для каждого плода отдельно).

•Фетометрия.

1) Бипариетальный размер головки.

2) Окружность головки.

3) Окружность живота.

4) Длина бедра.

•После 22-й недели беременности с помощью формул или номограмм обязательно вычисляют предполагаемый вес плода и процентиль, которому соответствует этот показатель (например, предполагаемый вес, определенный по таблице на основании бипариетального размера головки и окружности живота плода, составляет 1720 г, что соответствует 25-му процентилю для данного гестационного возраста).

•Анатомия плода. Визуализируют головной мозг, сердце, почки, мочевой пузырь, желудок, спинной мозг, а также определяют прикрепление и количество сосудов пуповины.

•Частота и ритм сердечных сокращений плода.

•Другие патологические изменения. Можно обнаружить увеличение (отечность) плаценты, перерастяжение мочевого пузыря плода, выраженное расширение чашечно-лоханочной системы и асцит. У матери можно обнаружить патологию органов малого таза, например миому матки. [4]

2)Прицельное УЗИ используют для более тщательного исследовании плода при подозрении на пороки развития или тяжелую ВУЗР. При этом особое внимание уделяют определенным органам и системам. Для прицельного УЗИ используют исследование в двумерном режиме. Интересующие участки фотографируют. В последнее время при УЗИ все чаще пользуются видеозаписью. [4]

3) Биофизический профиль плода. Предложили оценивать отдельные показатели состояния плода по балльной системе. Преимущества этого метода — высокая чувствительность (позволяет диагностировать внутриутробную гипоксию даже на ранней стадии) и высокая специфичность.[4]

4) Выборочное УЗИ. В отдельных случаях после стандартного или прицельного УЗИ, когда нет показаний для повторения этих исследований, допускается проведение выборочного УЗИ. Оно включает регулярную оценку определенного показателя, например локализации плаценты, объема околоплодных вод, биофизического профиля, размеров головки плода, сердцебиения, предлежания плода, а также проведение ам-ниоцентеза под контролем УЗИ. [4]

ΙΙΙ. Показания к УЗИ

1. Уточнение срока беременности перед кесаревым сечением, родовозбуждением и искусственным абортом.

2. Оценка развития плода при наличии факторов риска ВУЗР и макросомии: тяжелая преэклампсия, длительная артериальная гипертония, ХПН и тяжелый сахарный диабет.

3. Кровотечение из половых путей во время беременности.

4. Определение предлежания плода при неустойчивом положении плода в конце беременности и при невозможности определить предлежание плода другими методами в родах.

Информация о работе Эхокардиография-узи сердца