Традиционные и нетрадиционные источники энергии

Автор работы: Пользователь скрыл имя, 04 Декабря 2012 в 18:36, курсовая работа

Описание работы

Слово "энергия" с греческого означает действие, деятельность. Согласно современным представлениям энергия - это общая количественная мера различных форм движения материи. Имеются качественно разные физические формы движения материи, которые способны превращаться одна в другую в строго определенных отношениях (установлено в середине ХХ века), что и позволило ввести понятие энергии как общей меры движения материи.

Содержание работы

Введение……….………………………………………………………….……3
1. Экологические проблемы использования традиционной энергии……...5
1.1. Воздействие тепловой энергетики на окружающую среду…………….5
1.2. Воздействие ядерной энергетики на окружающую среду…………..….8
1.3. Воздействие гидроэнергетики на окружающую среду…………….….12
2. Нетрадиционные источники электрической энергии………………..….15
2.1. Гелиоэнергетика……………………………………………………..…...16
2.2. Энергия ветра…………………………………………………………..…20
2.3. Геотермальные источники энергии…………………………………..…22
2.4. Энергия Мирового океана…………………………………………….....23
Заключение…………………………………………….……………..……..…25
Литература………………………………………………………..…………...29

Файлы: 1 файл

трад. и нетрад. источники для курсовой 4 стр..doc

— 156.00 Кб (Скачать файл)

В мире пока действуют две-три приливно-отливные электростанции. Однако, кроме высокой стоимости энергии, электростанции такого типа нельзя отнести к высокоэкологичным. При их строительстве плотинами перекрываются заливы, что резко изменяет экологические факторы и условия обитания организмов.

     

   

  Заключение.     

         Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее преобразования из других форм. Вечные двигатели к сожалению невозможны. А сегодня 4 из 5 произведенных киловатт электроэнергии получаются при сжигании топлива или использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых станциях.

     Возросшие цены на нефть, быстрое развитие атомной энергетики, возрастание требований к защите окружающей среды потребовали нового подхода к энергетике. Хотя в основе энергетики ближайшего будущего по- прежнему останется теплоэнергетика на невозобновляемых ресурсах, структура ее изменится. Сократится использование нефти, возрастет производство энергии на атомных станциях, начнется использование нетронутых запасов дешевых углей, широко будет применяться природный газ.

     К сожалению, запасы нефти, угля, газа не бесконечны, а многие страны живут лишь сегодняшним днем, хищническим образом разграбляя земные богатства, и не задумываются над тем, что через несколько десятков лет эти запасы иссякнут. Что же произойдет тогда?

   Высокая цена на нефть, необходимая также и транспорту, и химии, заставит задуматься о других видах топлива. А пока ученые занимаются поисками новых нетрадиционных источников, которые могут взять на себя хотя бы часть забот по снабжению энергией населения.

     Несомненно, что в ближайшей перспективе тепловая энергетика будет оставаться преобладающей в энергетическом балансе мира и отдельных стран. Велика вероятность увеличения доли углей и других видов менее чистого топлива в получении энергии. В этой связи рассмотрим некоторые пути и способы их использования, позволяющие существенно уменьшать отрицательное воздействие на среду. Эти способы базируются в основном на совершенствовании технологий подготовки топлива и улавливания вредных отходов. В их числе можно назвать следующие:

    1. Использование и совершенствование очистных устройств. В настоящее время на многих ТЭС улавливаются в основном твердые выбросы с помощью различного вида фильтров. Наиболее агрессивный загрязнитель - сернистый ангидрид на многих ТЭС не улавливается или улавливается в ограниченном количестве. В то же время имеются ТЭС (США, Япония), на которых производится практически полная очистка от данного загрязнителя, а также от окислов азота и других вредных полютантов. Для этого используются специальные десульфурационные (для улавливания диоксида и триоксида серы) и денитрификационные (для улавливания окислов азота) установки. Наиболее широко улавливание окислов серы и азота осуществляется посредством пропускания дымовых газов через раствор аммиака. Конечными продуктами такого процесса являются аммиачная селитра, используемая как минеральное удобрение, или раствор сульфита натрия (сырье для химической промышленности). Такими установками улавливается до 96% окислов серы и более 80% оксидов азота. Существуют и другие методы очистки от названных газов.

    2. Уменьшение поступления соединений серы в атмосферу посредством предварительного обессеривания (десульфурации) углей и других видов топлива (нефть, газ, горючие сланцы) химическими или физическими методами. Этими методами удается извлечь из топлива от 50 до 70% серы до момента его сжигания.

    3. Большие и реальные возможности уменьшения или стабилизации поступления загрязнений в среду связаны с экономией электроэнергии. Особенно велики такие возможности за счет снижения энергоемкости получаемых изделий. Не менее реальна экономия энергии за счет уменьшения металлоемкости продукции, повышения ее качества и увеличения продолжительности жизни изделий. Перспективно энергосбережение за счет перехода на наукоемкие технологии, связанные с использованием компьютерных и других слаботочных устройств.

    4. Не менее значимы возможности экономии энергии в быту и на производстве за счет совершенствования изоляционных свойств зданий. Реальную экономию энергии дает замена ламп накаливания с КПД около 5% флуоресцентными , КПД которых в несколько раз выше.

    Крайне расточительно использование электрической энергии для получения тепла. Важно иметь в виду, что получение электрической энергии на ТЭС связано с потерей примерно 60-65% тепловой энергии, а на АЭС - не менее 70% энергии. Энергия теряется также при передаче ее по проводам на расстояние. Поэтому прямое сжигание топлива для получения тепла, особенно газа, намного рациональнее, чем через превращение его в электричество, а затем вновь в тепло.

    5. Заметно повышается также КПД топлива при его использовании вместо ТЭС на ТЭЦ. В последнем случае объекты получения энергии приближаются к местам ее потребления и тем самым уменьшаются потери, связанные с передачей на расстояние. Наряду с электроэнергией на ТЭЦ используется тепло, которое улавливается охлаждающими агентами. При этом заметно сокращается вероятность теплового загрязнения водной среды. Наиболее экономично получение энергии на небольших установках типа ТЭЦ (иогенирование) непосредственно в зданиях. В этом случае потери тепловой и электрической энергии снижаются до минимума. Такие способы в отдельных странах находят все большее применение.

    В заключение можно сделать вывод, что современный уровень знаний, а также имеющиеся и находящиеся в стадии разработок технологии дают основание для оптимистических прогнозов: человечеству не грозит тупиковая ситуация ни в отношении исчерпания энергетических ресурсов, ни в плане порождаемых энергетикой экологических проблем. Есть реальные возможности для перехода на альтернативные источники энергии (неисчерпаемые и экологически чистые). С этих позиций современные методы получения энергии можно рассматривать как своего рода переходные. Вопрос заключается в том, какова продолжительность этого переходного периода и какие имеются возможности для его сокращения.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Литература:

 

  1. Баланчевадзе В. И. , Барановский А. И. и др.  Энергетика сегодня и завтра. – М.: Энергоатомиздат, 2002. 370 с.
  2. 2.Кларк Р. Более чем достаточно. Оптимистический взгляд на будущее энергетики мира. – М.: Энергоатомиздат, 2004. 435 с.
  3. Источники энергии. Факты, проблемы, решения. – М. : Наука и техника, 2007. 120 с.
  4. Кириллин В. А. Энергетика. Главные проблемы: В вопросах и ответах. – М.: Знание, 2008. 98 с.
  5. Мировая энергетика: прогноз развития до 2020 г. / Пер. с англ. под ред. Ю. Н. Старшикова. – М.: Энергия, 2009. 85 с.
  6. Нетрадиционные источники энергии. – М.: Знание, 2005. 120 с.
  7. Подгорный А. Н. Водородная энергетика. – М.: Наука, 2008. 92 с

8. Энергетические ресурсы мира/ Под ред. П. С. Непорожнего, В. И. Попкова. – М.: Энергоатомиздат, 1995. 125 с.

  1. Юдасин Л. С... Энергетика: проблемы и надежды. – М.: Просвещение, 2006. 75 с.
  2. Большая советская энциклопедия.
  3. Ж-л «Вокруг света» 2012г, №12. 53 с.
  4. Энциклопедия  физики и техники. www.femto.com.ua.
  5. . Детлаф А.А., Яворский Б.М. Курс физики. М.: Издательский дом “Академия”, 2005. 720 с.
  6.   Трофимова Т.И. Курс физики. М.: Издательский дом “Академия”, 2006. 560 с.
  7. Глинка Н.Л. Общая химия. Учебное пособие для вузов. Л. Химия, 1986.
  8. Волкенштейн В.С. Сборник задач по  общему  курсу физики. М.: Наука. 1990. 400 с.
  9. Савельев И.В. Курс общей физики. М.: Высшая школа. 1990. 478 с.
  10. Ивлиев А.Д. Физика: Учебное пособие. Екатеринбург: ГОУ ВПО УГТУ-УПИ. 2004.  617 с.
  11. Ивлиев А.Д. Физика: Учебное пособие. Екатеринбург: ГОУ ВПО УГТУ-УПИ. 2005. 255с.

 

 


Информация о работе Традиционные и нетрадиционные источники энергии