Теория суперструн

Автор работы: Пользователь скрыл имя, 11 Июля 2014 в 21:58, доклад

Описание работы

Цель теории струн состоит как раз в объяснении знака "?" на диаграмме выше.
Характерный энергетический масштаб для квантовой гравитации называется Планковской массой и выражается через постоянную Планка, скорость света и гравитационную постоянную следующим образом:

Можно предположить, что в своем окончательном виде струнная теория даст ответы на следующие вопросы:
Каково происхождение известных нам 4-х сил Природы ?
Почему массы и заряды частиц именно такие, какие они есть ?

Содержание работы

Введение……………………………………………………………….…….……3
1. Основы струнной теории……………………………….....……..............5
2. D-браны……………………………………………………………………8
3. Дополнительные измерения…………………………………….…..….10
4. Дуальность…………………………………………………………….…13
5. М-теория……………………………………………………………….…15
6. Чёрные дыры………………………………………………………….….18
Заключение………………………………………………………………….……21
Список использованной литературы………………………………

Файлы: 1 файл

Теория суперструн.doc

— 217.50 Кб (Скачать файл)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Байкальский государственный университет экономики и права

Кафедра экономики и менеджмента сервиса

 

 

 

 

 

 

 

 

 

 

 

 

Доклад

по учебной дисциплине Концепции современного естествознания

на тему: Теория суперструн

 

 

 

 

 

 

 

 

 

 

                    Выполнил:

Студентка  группы ЮМ-10-1,

Ганжипова Елена Юрьевна

                                                          Проверил:

                                                                                  Моисеева Ирина Юрьевна                                                         

                                                        

                                                                    

 

 

 

 

 

 

 

 

 

 

                                             Иркутск – 2011                                        

                                       

                

                                                              Содержание

 

Введение……………………………………………………………….…….……3

  •         1. Основы струнной теории……………………………….....……..............5                                                              

  •         2. D-браны……………………………………………………………………8

  •         3. Дополнительные измерения…………………………………….…..….10

  •         4. Дуальность…………………………………………………………….…13

  •         5. М-теория……………………………………………………………….…15

  •         6. Чёрные дыры………………………………………………………….….18

Заключение………………………………………………………………….……21

Список использованной литературы………………………………….………..24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  • Введение

Струнная теория - одна из наиболее восхитительных и глубоких теорий в современной теоретической физике. К сожалению, это все же достаточно тяжелая для понимания вещь, понять которую можно лишь с позиций квантовой теории поля. Не повредит пониманию и знание математики типа теории групп, дифференциальной геометрии и т.д. Таким образом, для большинства она остается "вещью в себе".

Я выбрала эту тему, потому что струнная теория - динамично развивающаяся область знаний и по сей день; каждый день приносит что-нибудь новое о ней. Эта область знаний достаточно интересна, поскольку мы не сталкиваемся с ней в обыденные дни. Целью данного доклада является проявить интерес слушателей к вопросам, приведенным ниже. Пока мы не знаем точно, описывает ли струнная теория нашу Вселенную, и в каких пределах. Но она вполне может ее описывать, что можно увидеть в данном докладе.

Хотя Стандартная Модель и описывает большинство явлений, которые мы можем наблюдать с использованием современных ускорителей, все же многие вопросы, касающиеся Природы, остаются без ответа. Цель современной теоретической физики состоит как раз в объединении описаний Вселенной. Исторически, этот путь довольно удачен. Например, Специальная Теория Относительности Эйнштейна объединила электричество и магнетизм в электромагнитную силу. В работе Глэшоу, Вайнберга и Салама, получившей Нобелевскую премию 1979 года, показано, что электромагнитное и слабое взаимодействия могут быть объединены в электрослабое. Далее, есть все основания полагать, что все силы в рамках Стандартной Модели в конечном итоге объединяются. Если мы начнем сравнивать сильное и электрослабое взаимодействия, то нам придется уходить в области все больших энергий, пока они не сравняются по силе в районе ГэВ. Гравитация же присоединится при энергиях порядка .  
       

                             
       

Цель теории струн состоит как раз в объяснении знака "?" на диаграмме выше.

Характерный энергетический масштаб для квантовой гравитации называется Планковской массой и выражается через постоянную Планка, скорость света и гравитационную постоянную следующим образом:

 
Можно предположить, что в своем окончательном виде струнная теория даст ответы на следующие вопросы:

  • Каково происхождение известных нам 4-х сил Природы ?
  • Почему массы и заряды частиц именно такие, какие они есть ?
  • Почему мы живем в пространстве с 4-мя пространственными измерениями ?
  • Какова природа пространства-времени и гравитации ?

Как раз на эти вопросы я и попытаюсь ответить в своей работе.

  • 1.Основы  струнной теории

Мы привыкли думать об элементарных частицах (типа электрона) как о точечных 0-мерных объектах. Несколько более общим является понятие фундаментальных струн как 1-мерных объектов. Они бесконечно тонкие, а длина их порядка . Но это просто ничтожно мало по сравнению с длинами, с которыми мы обычно имеем дело, так что можно считать, что они практически точечные. Но, как мы увидим, их струнная природа довольно важна.

Струны бывают открытыми и замкнутыми. Двигаясь в пространстве-времени, они покрывают поверхность, называемую мировым листом.

Эти струны имеют определенные колебательные моды, которые определяют присущие частице квантовые числа, такие, как масса, спин, и т.д.. Основная идея состоит в том, что каждая мода несет в себе набор квантовых чисел, отвечающих определенному типу частиц. Это и есть окончательное объединение - все частицы могут быть описаны через один объект - струну !

В качестве примера рассмотрим замкнутую струну, которая выглядит так:

Такая струна отвечает безмассовому гравитону со спином 2 - частице, переносящей гравитационное взаимодействие. Кстати, это одна из особенностей струнной теории - она естественно и неизбежно включает в себя гравитацию как одно из фундаментальных взаимодействий.

Струны взаимодействуют путем деления и слияния. Например, аннигиляция двух замкнутых струн в одну замкнутую выглядит следующим образом:

Отметим, что поверхность мирового листа - гладкая поверхность. Из этого следует еще одно "хорошее" свойство струнной теории - в ней нет ряда расходимостей, присущих квантовой теории поля с точечными частицами. Фейнмановская диаграмма для такого же процесса

содержит топологическую сингулярность в точке взаимодействия.

Если мы "склеим" два простейших струнных взаимодействия между собой, то получим процесс, в котором две замкнутые струны взаимодействуют через объединение в промежуточную замкнутую струну, которая потом опять распадается на две:  

Этот основной вклад в процесс взаимодействия называется древесным приближением. Для того, чтобы вычислить квантовомеханические амплитуды процессов используя теорию возмущений, добавляют вклады от квантовых процессов высших порядков. Теория возмущений дает хорошие результаты, так как вклады становятся все меньше и меньше, когда мы используем все более высшие порядки. Даже если вычислить лишь первые несколько диаграмм, то можно получить достаточно точные результаты. В струнной теории высшие порядки отвечают большему числу дыр (или "ручек") на мировых листах.  

Хорошо в этом подходе то, что каждому порядку теории возмущения соответствует только одна диаграмма (например, в теории поля с точечными частицами число диаграмм растет экспоненциально в высших порядках). Плохо же то, что точные расчеты диаграмм с более чем двумя дырами очень сложны по причине сложности математического аппарата, используемого при работе с подобными поверхностями. Теория возмущений очень полезна при исследовании процессов со слабой связью, и большая часть открытий в области физики элементарных частиц и струнной теории связана именно с ней. Однако, все это еще далеко от завершения. Ответы на самые глубокие вопросы теории можно будет получить лишь после того, как будет завершено точное описание этой теории.

 

    • 2.D-браны

    У струн могут быть совершенно произвольные условия на границе. Например, замкнутая струна имеет периодичные граничные условия (струна "переходит сама в себя"). У открытых же струн могут быть два типа граничных условий - условия Неймана и условия Дирихле. В первом случае конец струны может свободно двигаться, правда, не унося при этом импульса. Во втором же случае конец струны может двигаться по некоторому многообразию. Это многообразие и называется D-браной или Dp-браной (при использовании второго обозначения 'p' - целое число, характеризующее число пространственных измерений многообразия). Пример - две струны, у которых один или оба конца закреплены на 2-мерной D-бране или D2-бране:

    D-браны могут иметь число  пространственных измерений от -1 до числа пространственных измерений  нашего пространства-времени. Например, в теории суперструн 10 измерений - 9 пространственных и одно временное. Таким образом, в суперструнах максимум что может существовать, это D9-брана. Отметим, что в этом случае концы струн фиксированы на многообразии, покрывающем все пространство, поэтому они могут двигаться везде, так что на самом-то деле наложено условие Неймана ! В случае p=-1 все пространственные и временные координаты фиксированы, и такая конфигурация называется инстантоном или D-инстантоном. Если p=0, то все пространственные координаты фиксированы, и конец струны может существовать лишь в одной единственной точке в пространстве, так что D0-браны зачастую называют D-частицами. Совершенно аналогично D1-браны называют D-струнами. Кстати, само слово 'брана' произошло от слова 'мембрана', которым называют 2-мерные браны, или 2-браны.

    В действительности D-браны динамичны, они могут флуктуировать и двигаться. Например, они взаимодействуют гравитационно. На диаграмме ниже можно видеть, как одна замкнутая струна (в нашем случае гравитон) взаимодействует с D2-браной. Особо стоит отметить тот факт, что при взаимодействии замкнутая струна становится открытой с обоими концами на D-бране.  
     
    Так что, струнная теория это нечто большее, чем просто теория струн.

     

    • 3.Дополнительные  измерения

    Суперструны существуют в 10-мерном пространстве-времени, в то время как мы живем в 4-мерном. И если суперструны описывают нашу Вселенную, нам необходимо как-то связать между собой два эти пространства. Для этого свернем 6 измерений до очень маленького размера. Если при этом размер компактного измерения окажется порядка размера струн ( ), то мы из-за малости этого измерения попросту не сможем никак его напрямую увидеть. В конечном итоге мы получим наше (3+1)-мерное пространство, в котором каждой точке нашей 4-мерной Вселенной отвечает крохотное 6-мерное пространство. Очень схематично это представлено на картинке снизу:

    На самом деле это довольно старая идея, которая восходит к работам Калуцы (Kaluza) и Клейна (Klein) 1920-х годов. При этом описанный выше механизм называют теорией Калуцы-Клейна или компактификацией. В самой работе Калуцы показано, что если мы возьмем теорию относительности в 5-мерном пространстве-времени, затем свернем одно измерение в окружность, то получим 4-мерное пространство-время с теорией относительности плюс электромагнетизм ! А так получается из-за того, что электромагнетизм это U(1) калибровочная теория. U(1) это группа вращений вокруг точки на плоскости. Механизм Калуцы-Клейна дает простую геометрическую интерпретацию этой окружности - это то самое свернутое пятое измерение. Хотя свернутые измерения и малы для прямого детектирования, тем не менее они могут иметь глубокий физический смысл. [Совершенно случайно просочившись в прессу, работа Калуцы и Клейна вызвала много разговоров по поводу пятого измерения.]

    Как мы сможем узнать, есть ли на самом деле дополнительные измерения и как мы сможем их "почуствовать", имея ускорители с достаточно высокими энергиями ? Из квантовой механики известно, что если пространство периодично, то импульс квантован: , тогда как если пространство неограниченно, то спектр значений импульса непрерывен. Если уменьшать радиус компактификации (размер дополнительных измерений), то диапазон дозволенных значений импульса будет увеличиваться. Так получают башню состояний импульса - башню Калуцы Клейна.

    А если радиус окружности взять очень большим ("декомпактифицируем" измерение), то диапазон возможных значений импульса будет довольно узким, но будет "почти-непрерывным". Такой спектр будет похож на спектр масс мира без компактификаций. Например, безмассовые в большем числе измерений состояния в меньшем числе измерений будут выглядеть именно как описанная выше башня состояний. Тогда должен наблюдаться "набор" частиц с массами, равноотстоящими друг от друга. Правда, для того, чтобы "увидеть" самые массивные частицы, необходимы ускорители, значительно лучшие тех, которыми мы сейчас располагаем.

    Информация о работе Теория суперструн