Теория относительности

Автор работы: Пользователь скрыл имя, 24 Мая 2013 в 18:55, курсовая работа

Описание работы

Название же “принцип относительности” или “постулат относительности”, возникло как отрицание представления об абсолютной неподвижной системе отсчета, связанной с неподвижным эфиром, вводившимся для объяснения оптических и электродинамических явлений. Принцип относительности - фундаментальный физический закон, согласно которому любой процесс протекает одинаково в изолированной материальной системе, находящейся в состоянии покоя, и в такой же системе в состоянии равномерного прямолинейного движения. Состояния движения или покоя определяются по отношению к произвольно выбранной инерциальной системе отсчета.

Содержание работы

1. Введение
2. Общая теория относительности (ОТО)
2.1 История создания общей теории относительности
2.2 Принцип равенства гравитационной и инертной масс
2.3 Принцип движения по геодезическим линиям
2.4 Кривизна пространства-времени
2.5 Пространство-время ОТО и сильный принцип эквивалентности
2.6 Основные следствия ОТО
3. Экспериментальные подтверждения ОТО
3.1 Эффекты, связанные с ускорением систем отсчёта
3.2 Гравитационное отклонение света
3.3 Чёрные дыры
3.4 Орбитальные эффекты
3.5 Увлечение инерциальных систем отсчёта
3.6 Другие предсказания
4. Космология
5. Проблемы ОТО
5.1 Проблема энергии
5.2 ОТО и квантовая физика
6. Специальная теория относительности (СТО)
6.1 Создание СТО
7. Постулаты Эйнштейна
8. Сущность СТО
8.1 Четырёхмерный континуум — пространство-время
9. Отношения теории относительности с другими физическими понятиями
9.1 Гравитация
3
9.2 Классическая механика
9.3 Квантовая механика
10. Эффекты СТО
10.1 Замедление времени
10.2 Сокращение линейных размеров
10.3 О релятивистской массе
11. Исторический очерк
12. Заключение
13. Список литературы

Файлы: 1 файл

ксе.doc

— 165.50 Кб (Скачать файл)

 

 

7. Постулаты  Эйнштейна

 

СТО полностью  выводится на физическом уровне строгости  из трёх постулатов (предположений):

  1. Справедлив принцип относительности Эйнштейна — расширение принципа относительности Галилея.
  2. Скорость света не зависит от скорости движения источника во всех инерциальных системах отсчёта.
  3. Пространство и время - однородны, пространство является изотропным.

Формулировка  второго постулата может быть шире: «Скорость света постоянна  во всех инерциальных системах отсчёта», но для вывода СТО достаточно его исходной формулировки Эйнштейном, записанной выше. Третий постулат в явном виде обычно не фигурирует в вариантах вывода СТО, но подразумевается. Приписывание постулатов Эйнштейну правомерно в той степени, что до его работы эти уже сформулированные отдельно друг от друга (в частности, А. Пуанкаре) утверждения в совокупности явным образом никем не рассматривались.

Иногда в  постулаты СТО также добавляют  условие синхронизации часов  по А. Эйнштейну, но принципиального значения оно не имеет: при других условиях синхронизации лишь усложняется математическое описание экспериментальной ситуации без изменения предсказываемых и измеряемых эффектов (см. по этому поводу работы в списке литературы).

Тем не менее, опора  на достижения экспериментальной физики позволяет утверждать, что в пределах своей области применимости — при пренебрежении эффектами гравитационного взаимодействия тел — СТО является справедливой с очень высокой степенью точности (до 10−12 и выше). По меткому замечанию Л. Пэйджа, «в наш век электричества вращающийся якорь каждого генератора и каждого электромотора неустанно провозглашает справедливость теории относительности — нужно лишь уметь слушать».[4]

 

 

8. Сущность  СТО

 

Следствием  постулатов СТО являются преобразования Лоренца, заменяющие собой преобразования Галилея для нерелятивистского, «классического» движения. Эти преобразования связывают между собой координаты и времена одних и тех же событий, наблюдаемых из различных инерциальных систем отсчёта.

При движении с околосветовыми скоростями видоизменяются также и законы динамики. Так, можно вывести, что второй закон Ньютона, связывающий силу и ускорение, должен быть модифицирован при скоростях тел, близких к скорости света. Кроме того, можно показать, что и выражение для импульса и кинетической энергии тела уже имеет более сложную зависимость от скорости, чем в нерелятивистском случае.

Специальная теория относительности получила многочисленные подтверждения на опыте и является безусловно верной теорией в своей области применимости.[8]

 

8.1 Четырёхмерный  континуум — пространство-время

 

С математической точки зрения, непривычные свойства СТО можно интерпретировать как  результат того, что время и  пространство не являются независимыми понятиями, а образуют пространство-время Минковского, которое является псевдоевклидовым пространством. Вращения базиса в этом четырёхмерном пространстве-времени, смешивающие временную и пространственные координаты 4-векторов, выглядят для нас как переход в движущуюся систему отсчета и похожи на вращения в обычном трёхмерном пространстве. При этом естественно изменяются проекции четырёхмерных интервалов между определёнными событиями на временную и пространственные оси системы отсчёта, что и порождает релятивистские эффекты изменения временных и пространственных интервалов. Именно инвариантная структура этого пространства, задаваемая постулатами СТО, не меняется при переходах от одного условия синхронизации часов к другому, и гарантирует независимость результатов экспериментов от принятого условия.

Аналог расстояния между событиями в пространстве Минковского, называемый интервалом, при  введении наиболее простых координат, аналогичных декартовым координатам  трёхмерного пространства, даётся выражением:

 

 

 

 

 

Обратите внимание: «квадрат расстояния» между двумя разными событиями может быть не только положительным, но и отрицательным и даже нулём. Именно незнакоопределённость метрики определяет свойства пространства-времени, делая его геометрию псевдоевклидовой.[10]

 

 

9. Отношения  теории относительности с другими физическими понятиями

 

9.1 Гравитация

 

Для описания гравитации разработано особое расширение теории относительности, в котором допускается  кривизна пространства-времени. Тем  не менее, динамика даже в рамках СТО  может включать гравитационное взаимодействие, пока потенциал гравитационного поля много меньше c2.

Следует также  заметить, что специальная теория относительности перестает работать в масштабах всей Вселенной, требуя замены на ОТО.

 

9.2 Классическая  механика

 

Теория относительности входит в существенное противоречие с некоторыми аспектами классической механики. Например, парадокс Эренфеста показывает несовместимость СТО с понятием абсолютно твёрдого тела. Надо отметить, что даже в классической физике предполагается, что механическое воздействие на твёрдое тело распространяется со скоростью звука, а отнюдь не с бесконечной (как должно быть в воображаемой абсолютно твёрдой среде).

 

9.3 Квантовая  механика

 

Специальная теория относительности (в отличие от общей) полностью совместима с квантовой механикой. Их синтезом является квантовая теория поля. Более того, такое квантово-механическое явление как спин без привлечения теории относительности не имеет разумного объяснения. Однако, обе теории вполне независимы друг от друга. Возможно построение как квантовой механики, основанной на нерелятивистском принципе относительности Галилея, так и теорий на основе СТО, полностью игнорирующих квантовые эффекты.

Развитие квантовой  теории всё ещё продолжается, и  многие физики считают, что будущая  полная теория ответит на все вопросы, имеющие физический смысл, и даст в пределах как СТО в сочетании с квантовой теорией поля, так и ОТО. Скорее всего СТО ожидает такая же судьба, как и механику Ньютона — будут точно очерчены пределы её применимости. В то же время такая максимально общая теория пока является очень отдалённой перспективой.[6]

 

 

10. Эффекты  СТО

 

Пусть система  отсчёта K' движется со скоростью V относительно системы отсчёта K0, соответственно, штрихованные величины относятся к K', а величины с индексом 0 — к K0. К наиболее распространённым эффектам СТО, также называемым релятивистскими эффектами, относят:

 

10.1 Замедление  времени

 

Время в движущейся системе отсчёта течёт медленнее:

С этим эффектом связан так называемый парадокс близнецов.

Парадокс близнецов — мысленный эксперимент с двумя близнецами N и N`, движущимися относительно друг друга. Согласно эффекту релятивистского замедления времени каждый из близнецов считает (и это подтверждается его наблюдениями), что часы другого близнеца идут медленнее, чем его часы.

Если один из близнецов  улетит, а потом вернётся, то кто  из них окажется младше?

Согласно СТО младше окажется улетавший и вернувшийся.

Возникает парадокс: Почему, если каждый видел, что время замедляется  у другого, младше становится именно улетавший?

Близнец, который вернулся, неизбежно должен был изменить свою скорость. Поэтому его система  отсчёта не является инерциальной (он должен двигаться с ускорением). А согласно СТО равноправны только инерциальные системы. Следовательно, нет ничего удивительного, что системы оказываются несимметричными.

Парадоксом близнецов  часто называют сам вывод теории относительности о том, что один из близнецов состарится сильнее  другого. Хотя такая ситуация и необычна, в ней нет внутреннего противоречия, а многочисленные эксперименты по релятивистскому замедлению времени подтверждают теорию относительности и дают основание утверждать, что так и будет на самом деле.[13]

 

10.2 Сокращение  линейных размеров

 

Линейные размеры  тел в движущейся системе отсчёта  сокращаются.

Парадокса шеста и сарая:

Из СТО мы знаем, что  движущиеся тела сокращаются в направлении  движения. Возьмём сарай с двумя  сквозными дверьми. Возьмём шест, который чуть длиннее, чем сарай. Если открыть обе двери и просунуть  в них шест, то он в сарай не поместится и будет торчать из дверей по обе стороны. Воспользуемся сокращением длин — разгоним шест до такой скорости, чтобы он сократился, допустим в два раза, и тогда, пролетая сквозь сарай, он весь целиком там поместится! Захлопнем двери сарая, пока шест находится внутри и тут же быстренько их откроем, чтобы не поломать шест. И мы видим следующее противоречие: система отсчёта, связанная с шестом, такая же равноправная, как и связанная с сараем. То есть, в ней будут наблюдаться те же эффекты сокращения продольных размеров, но только уже сарая! В ней сарай станет короче, и чуть более длинный изначально шест станет еще более длинным и никогда в сарай не поместится. Значит, захлопнув двери сарая, мы обязательно сломаем шест!

Этот парадокс — один из типичных случаев, когда, вцепившись в один из эффектов СТО, человек делает далеко идущие выводы, пренебрегая другими, подчас более важными, эффектами. Сокращение длин действительно произойдет так, как описано в парадоксе — для сарая шест окажется укороченным и поместится в нём целиком, а для шеста — сарай окажется укороченным и не сможет поместить в себя весь шест. Так где же правда?

А правда — в относительности  одновременности. Сокращение длин —  это второстепенный эффект, относительность  же одновременности — намного же более важный. Ещё раз вспомним уже сказанное тут: события, одновременные в одной системе отсчета, будут по СТО неодновременными в другой системе отсчёта, если системы движутся друг относительно друга. Если присмотреться к эксперименту, у нас в нём есть чётко выраженные события, одновременные в ИСО сарая — это момент, когда мы закрываем переднюю и заднюю двери сарая. Мы делаем это в ИСО сарая ОДНОВРЕМЕННО. Нетрудно догадаться, что в ИСО шеста они произойдут в разные моменты времени, а именно: когда передний конец шеста войдет в сарай и приблизится к задней двери, она захлопнется и тут же откроется, а когда задний конец шеста сравняется с передней дверью, захлопнется и откроется, в свою очередь, и она. Таким образом, шест не сломается ни в ИСО сарая, ни в ИСО шеста. Если внимательно присмотреться к этому парадоксу, то можно сделать один важный вывод насчёт эффекта сокращения длин. Как мы измеряем длину объекта? Прикладываем к нему линейку и смотрим на показания шкалы у начала и конца объекта. А что если этот объект двигается? Тогда, чтобы не испортить показания, посмотреть на шкалу у начала и конца объекта надо одновременно, а иначе показания окажутся неверными. Но ведь то, что в нашей ИСО по теории относительности одновременно, в другой ИСО будет неодновременным.

  • Парадокс диска:

  • Рассмотрим велосипедное колесо, которое крутится с большой  скоростью. Каждый элемент спицы  движется перпендикулярно своей  длине и сокращения в продольном измерении не испытывает. Значит, не испытывает сокращения и вся спица. С другой стороны, каждый элемент обода движется вдоль своей длины и сокращается. Таким образом, отношение длины окружности к её радиусу меняется.[10]

    Разгадка в том, что  каждый элемент колеса движется ускоренно, и СТО тут малоприменимо. В  ОТО же непостоянность числа π совершенно нормальна.

     

    10.3 О  релятивистской массе

     

    Так называемая релятивистская масса движущегося  объекта определяется соотношением (верным и для частиц, движущихся со скоростью света):

     

     

     

    Релятивистская  масса движущегося объекта больше массы покоя:

     

     

     

    и возрастает с  увеличением скорости. «Утяжеление» следует понимать лишь условно, так  как второй закон Ньютона в  форме F = m'a всё равно не выполняется (направление ускорения в общем случае не совпадает с направлением силы).

    В современной  физической литературе по СТО, однако, принято, что m — масса частицы (инвариантная масса) не зависит от скорости, являясь инвариантом относительно преобразований Лоренца, и является величиной неаддитивной. Понятие «релятивистской массы» не используется и не рекомендуется к применению, хотя оно и встречается в ранних работах по теории относительности.[14]

     

     

    11. Исторический  очерк

     

    В 1728 году английский астроном Брэдли открыл аберрацию света: все звёзды описывают на небосводе  малые круги с периодом в один год. С точки зрения эфирной теории света это означало, что эфир неподвижен, и его кажущееся смещение (при движении Земли вокруг Солнца) по принципу суперпозиции отклоняет изображения звёзд. Френель, однако, допускал, что внутри вещества эфир частично увлекается. Эта точка зрения, казалось, нашла подтверждение в опытах Физо, который обнаружил, что скорость света в воде зависит от направления её движения: вдоль течения скорость света больше, чем против течения.

    Максвелл в 1868 году предложил схему решающего  опыта, который после изобретения интерферометра смог осуществить в 1881 году американский физик Майкельсон. Позже Майкельсон и Эдуард Морли повторили опыт несколько раз с возрастающей точностью, но результат был неизменно отрицательным — «эфирного ветра» не существовало.

    Информация о работе Теория относительности