Современная наука: основные черты

Автор работы: Пользователь скрыл имя, 19 Мая 2013 в 17:32, контрольная работа

Описание работы

Толчком, началом новейшей революции в естествознании, приведшей к появлению современной науки, был целый ряд ошеломляющих открытий в физике, разрушивших всю картезианско-ньютоновскую космологию. Сюда относятся открытие электромагнитных волн Г. Герцем, коротковолнового электромагнитного излучения К. Рентгеном, радиоактивности А. Беккерелем, электрона Дж. Томсоном, светового давления П.Н.Лебедевым, введение идеи кванта М. Планком, создание теории относительности А. Эйнштейном, описание процесса радиоактивного распада Э.Резерфордом.

Содержание работы

1 Введение…………………………………………………………………..2
2 Становление современной науки………………………………………..3
3 Специфика современных экспериментальных и теоретических исследований………………………………………………………………………9
4 Основные черты современного естествознания как науки……………9
5 Важнейшие достижения современного естествознания……………...11
6 Заключение……………………………………………………………...18
7 Список используемых источников…………………………………….19

Файлы: 1 файл

КСЕ.doc

— 97.00 Кб (Скачать файл)

4. До своего логического конца дошло противостояние науки и религии. Не будет преувеличением утверждение, что наука стала религией XX века. Соединение науки с производством, научно-техническая революция, начавшаяся с середины столетия, казалось, предъявили ощутимые доказательства ведущей роли науки в обществе. Парадокс заключался в том, что именно этому ощутимому свидетельству суждено было оказаться решающим в достижении обратного эффекта. [1]

Специфика современных  экспериментальных и теоретических  исследований

На протяжении всех этапов эксперимента естествоиспытатель руководствуется в той или иной форме теоретическими знаниями. В последнем столетии в силу ряда объективных причин основной профессиональной деятельностью некоторых ученых стала исключительно теоретическая работа. Одним из первых ученых, которые не проводили никаких экспериментов, был немецкий физик Макс Планк.

Одна из существенных объективных  причин профессиональной обособленности экспериментаторов и теоретиков заключается в том, что технические  средства эксперимента значительно усложнились. Экспериментальная работа требует концентрации больших усилий, она не под силу одному человеку и выполняется в большинстве случаев целыми коллективом научных работников. Например, для проведения эксперимента с применением ускорителя, реактора и т. п. требуется относительно большой штат научных сотрудников. Поэтому даже при большом желании теоретик не в состоянии проверить на практике свои теоретические выводы и предложения. [2]

Основные черты  современного естествознания как науки

Механика больше не является ведущей наукой и универсальным методом изучения окружающих явлений. Метафизические основания классической науки, рассматривавшие каждый предмет в изоляции, вне его связей с другими предметами, как нечто особенное и завершенное, также ушли в прошлое.

Теперь мир признается совокупностью  разноуровневых систем, находящихся  в состоянии иерархической соподчиненности. При этом на каждом уровне организации материи действуют свои закономерности. Аналитическая деятельность, являвшаяся основной в классической науке, уступает место синтетическим тенденциям, системно-целостному рассмотрению предметов и явлений объективного мира. Уверенность в существовании конечного предела делимости материи, стремление найти конечную материальную первооснову мира сменились убеждением в принципиальной невозможности этого и представлениями о неисчерпаемости материи вглубь. Считается невозможным получение абсолютной истины. Истина считается относительной, существующей во множестве теорий, каждая из которых изучает свой срез реальности.

Если классическая наука  не видела качественной специфики Жизни  и Разума во Вселенной, то современная  наука доказывает их неслучайность  появления в мире. Это на новом  уровне возвращает нас к проблеме цели и смысла Вселенной, говорит  о запланированном появлении разума, который полностью проявит себя в будущем.

Названные черты современной  науки нашли свое воплощение в  новых теориях и концепциях, появившихся  во всех областях естествознания. Среди  важнейших открытий XX в. — теория относительности, квантовая механика, ядерная физика, теория физического взаимодействия; новая космология, основанная на теории Большого взрыва; эволюционная химия, стремящаяся к овладению опытом живой природы; генетика, расшифровка генетического кода и др. Но подлинным триумфом неклассической науки, бесспорно, стали кибернетика, воплотившая идеи системного подхода, а также синергетика и неравновесная термодинамика, основанные на методе глобального эволюционизма.

Ускорение научно-технического прогресса, связанное с возрастанием темпов общественного развития, привело к тому, что потенциал современной науки, заложенный в ходе второй глобальной научной революции, во многом оказался исчерпанным. Поэтому современная наука снова переживает состояние кризиса, являющегося симптомом новой глобальной научной революции.

Начиная со второй половины XX в. исследователи фиксируют вступление естествознания в новый этап развития — постнеклассический, который характеризуется  целым рядом фундаментальных  принципов и форм организации. В  качестве таких принципов выделяют чаще всего эволюционизм, космизм, экологизм, антропныи принцип, холизм и гуманизм. Эти принципы ориентируют современное естествознание не столько на поиски абстрактной истины, сколько на полезность для общества и каждого человека. Главным показателем при этом становится не экономическая целесообразность, а улучшение среды обитания людей, рост их материального и духовного благосостояния. Естествознание таким образом реально поворачивается лицом к человеку, преодолевая извечный нигилизм по отношению к злободневным потребностям людей.

Важнейшие достижения современного естествознания

Несмотря на отставание экспериментальных исследований от теоретических, в естествознании второй половины XX столетия благодаря развитию экспериментальной базы достигнуты значительные успехи. Невозможно перечислить все достижения во всех отраслях естествознания, но можно однозначно утверждать, что большинство из них воплотилось в современных наукоемких технологиях. Высокотемпературная сверхпроводимость, молекулярные пучки, химические лазеры, достижения ядерной химии, химический синтез ДНК, клонирование и т. п. – вот некоторые очень важные достижения современного естествознания...

Высокотемпературная сверхпроводимость

История сверхпроводимости  начинается с 1911г., когда датский ученый X. Камерлинг-Оннес, исследуя электрическое сопротивление охлажденных металлов, обнаружил, что при охлаждении ртути до температуры жидкого гелия, составляющей около 4,2 К, электрическое сопротивление этого металла скачком уменьшается до нуля. А это означает, что металл при данной температуре переходит в сверхпроводящее состояние. По мере синтеза новых материалов сверхпроводников температура перехода их в сверхпроводящее состояние неуклонно повышалась. В 1941 г. для бинарного сплава NвN была установлена температура сверхпроводящего перехода около 15 К, а в 1973 г. – примерно 23 К для другого бинарного сплава – NвGe.

В 1992г. синтезирован материал, переходящий в сверхпроводящее  состояние уже при 170 К. Такое сверхпроводящее  состояние можно реализовать при охлаждении не жидким азотом, а более дешевым охладителем – жидким ксеноном. Этот сверхпроводящий материал состоит из оксида меди, стронция и кальция; структура его относительно проста.

Широкое применение сверхпроводников позволит существенно сократить рассеяние энергии в различного рода электрических цепях, и особенно при электропередаче, потери в которой составляют около 20% при использовании обычных проводников.

Химические лазеры

Экспериментальное исследование смешивания двух газообразных соединений, проведенное более 10 лет назад, позволило установить распределение энергии между молекулами. Например, в результате реакции атомного водорода с молекулярным хлором в газовой форме образуется хлороводород и атомарный хлор, которые излучают инфракрасный свет. Анализ спектра излучения показывает, что существенная часть энергии (около 40%) представляет собой энергию колебательного движения молекулы НСl. За открытие такого рода явлений Джону Поляни (Университет Торонто) присуждена Нобелевская премия по химии. Данные исследования привели к созданию первого химического лазера – лазера, получающего энергию от взрыва смеси водорода с хлором. Химические лазеры отличаются от обычных тем, что превращают в когерентное излучение не энергию электрического источника, а энергию химической реакции. Открыты десятки химических лазеров, в том числе и достаточно мощные для инициирования термоядерного синтеза (йодный лазер) и для военных целей (водородно-фторидный лазер).

Молекулярные пучки

Молекулярный пучок  представляет собой струю молекул, образующуюся при испарении вещества в специальной печи и пропускании его через узкое сопло, формирующее пучок в камере, в которой поддерживается сверхвысокий вакуум, исключающий межмолекулярные столкновения. При направлении молекулярного пучка на реагенты – соединения, вступающие в реакцию, – при низком давлении (10-10атм) каждая молекула может участвовать не более чем в одном столкновении, приводящем к реакции. Для осуществления такого сложного эксперимента требуется установка сверхвысокого вакуума, источник интенсивных сверхзвуковых пучков, высокочувствительный масс-спектрометр и электронные определители времени свободного пробега молекул. За проведение этих экспериментов Юан-Чен Ли (Калифорнийский университет Беркли) и Дадли Хермбаху (Гарвардский университет) присуждена Нобелевская премия по химии. Опыты с молекулярными пучками позволили определить, например, ключевые реакции при горении этилена, при котором в реакции этилена с кислородом образуется короткоживущая молекула.

Достижения ядерной  химии

В последние десятилетия  методы ядерной химии нашли широкое  применение при исследовании грунта планет Солнечной системы и Луны. Например, для химического анализа  грунта Луны применялся трансурановый  элемент. Такой метод позволил определить около 90% элементов в трех разных местах лунной поверхности. Анализ изотопного состава образцов лунного грунта, метеоритов и других небесных тел помогает сформировать представление об эволюции Вселенной.

Ядерная химия применяется  и в медицине. Например, в США  ежегодно назначается около 20 млн. процедур с применением радиоактивных препаратов. Особенно широко распространено лечение щитовидной железы радиоактивным йодом. Практика показывает, что химические соединения радиоактивного технеция обладают терапевтическими свойствами. Позитронный метод, основанный на взаимодействии с исследуемым объектом позитронов, испускаемых короткоживущими изотопами углерода и фтора, а также применение стабильных изотопов в сочетании со спектроскопией ЯМР дают возможность исследования процессов обмена веществ в живых организмах и служат весьма эффективным средством ранней диагностики заболеваний.

Новая ядерная установка

Одна из основных проблем  атомной энергетики связана с  нахождением таких условий протекания ядерных процессов, при которых  можно было бы уменьшить количество ядерных отходов и продлить срок службы атомных реакторов. Учеными разных стран отрабатываются многочисленные способы, решения этой весьма важной проблемы. Среди разных направлений в ее решении уже воплощается в металл новое направление в ядерной энергетике – так называемый электрояд, на который ученые возлагают большие надежды. В Институте теоретической и экспериментальной физики Российской академии наук и в институтах других стран сооружается прообраз пока не известных практике ядерных установок, которые станут безотходными, экологически чистыми и более безопасными источниками энергии, чем многие из существующих. Действующая модель новой ядерной энергетической установки состоит из двух агрегатов – ускорителя элементарных частиц и бланкета – особого типа атомного реактора. Для технического воплощения этой новой идеи предполагается использовать старые атомные реакторы, выработавшие свой ресурс.

Химический синтез ДНК

В полимерных молекулах  ДНК природа кодирует информацию, необходимую для создания живого организма. Цепочка из повторяющихся сложноэфирных фосфатных связей между сахарами образует жесткий скелет ДНК, на котором информация записывается с помощью особого алфавита из четырех «букв» генетического кода: аденина, тимина, цитозина и гуанина (А, Т, С, G). Последовательность таких «букв» кодирует информацию. Каждая «буква» содержит несколько атомов азота, ковалентно связанных с фрагментами Сахаров. Двойная спираль ДНК включает водородные связи. Информацию, записанную в молекуле ДНК, можно прочитать, разрывая и вновь создавая относительно слабые водородные связи, совсем не затрагивая более прочные связи «сахар-фосфат» в цепочке-матрице.

Первый химический синтез гена, осуществленный более 20 лет назад, потребовал многолетней напряженной работы. В промышленных лабораториях уже синтезированы гены инсулина и интерферона. Произведен синтез гена для фермента рибонуклеозы, открывающей возможность изменять желаемым образом физические и химические свойства белка. Однако самыми современными методами получаются фрагменты генов длиной в сотни пар оснований, а для дальнейших исследований нужны фрагменты в 100 и более раз длиннее.

Успехи генной инженерии

Современная молекулярная биология позволяет вводить почти  любой отрезок ДНК в микроорганизм, чтобы заставить его синтезировать тот белок, который кодирует данная ДНК. А современная органическая химия дает возможность синтезировать последовательности нуклеотидов – фрагменты генов. Такие фрагменты генов можно применять для изменения исходной последовательности оснований в гене, кодирующем нужный белок. Таким способом можно получить модифицированный белок с измененной последовательностью аминокислот, т. е. белок со структурой и функцией, ранее не существовавшими в природе.

Данный метод осуществления  специфических мутаций в нормальных белках получил название мутагенеза. Он позволяет получить белки любой структуры. Кроме того, один раз синтезированная молекула гена, кодирующего белок, с помощью микроорганизмов может воспроизвести белок в любых количествах.

Клонирование

Успехи, достигнутые в  разных отраслях естественных наук, открыли  новые возможности в понимании  строения геномов человека и других сложных организмов. Ученые научились  соединять ДНК из разных организмов, определять и выделять сегменты ДНК, кодирующие нужный белок, определять нуклеотидные последовательности в больших фрагментах ДНК.

Найти единственно нужный сегмент ДНК, содержащийся всего  в одном гене, среди огромного  количества генетического материала  клетки организма человека столь  же трудно, как отыскать иголку в стоге сена. Решение данной проблемы дает применение рекомбинантных ДНК. Фрагменты ДНК клетки встраиваются в миллион быстро делящихся бактерий. Каждая из бактерий, которые выращиваются отдельно, дает целую колонию своих потомков. Применяя методы диагностики, чувствительные к определенной функции гена, находят колонию бактерий, содержащую новый ген. Каждая из быстро растущих колоний бактерий дает миллиарды одинаковых копий каждого гена. Поэтому такой ген можно выделить из бактерий в химически чистом виде. С помощью такого процесса – клонирования – очищены сегменты ДНК более 100 различных генов человека. Еще большее число генов выделено из простейших организмов, таких, как дрожжи.

Информация о работе Современная наука: основные черты