Современная генная инженерия: успехи и проблемы

Автор работы: Пользователь скрыл имя, 14 Февраля 2012 в 14:18, контрольная работа

Описание работы

Дезоксирибонуклеиновая кислота, или ДНК, впервые была
выделена из клеточных ядер. Поэтому ее и назвали нуклеиновой (греч. nucleus
- ядро). ДНК состоит из цепочки нуклеотидов с четырьмя различными
основаниями: аденином (А), гуанином (G), цитозином (С) и тимином (Т). ДНК
почти всегда существует в виде двойной спирали, то есть она представляет
собой две нуклеотидные цепи, составляющие пару. Вместе их удерживает так
называемая комплементарность пар оснований. "Комплементарность" означает,
что когда А и Т в двух цепях ДНК расположены друг против друга, между ними
спонтанно образуется связь. Аналогично комплиментарную пару образуют G и С.
В клетках человека содержится 46 хромосом.

Содержание работы

ВВЕДЕНИЕ…………………………………………………………………3
I. Современное представление о гене……………………….................5
1.Строение гена…………………………………………………………5
2.Основные понятия и методы генетики……………………………5
II. Генная инженерия……………………………………………………..7
I) Успехи
1. Возможности генной инженерии, проект "Геном человека"..8
2. Преимущества генной инженерии………………………………11
3. Наиболее впечатляющие достижения…………………………..12
II) Проблемы
1. Против генной инженерии……………………………………….14
PS: Генетически модифицированные продукты
1) Экологические риски……………………………………………16
2)Медицинские риски………………………………………………17
3)Социально-экономические риски………………………………18
2.Научные факты опасности генной инженерии…………………18
ЗАКЛЮЧЕНИЕ………………………………………………………………20
Литература…………………………………………………………………….21
Библиографический список использованной литературы в интернете

Файлы: 1 файл

КСЕ контрольная.doc

— 201.00 Кб (Скачать файл)

     Эксперименты  велись и в другой области - области  запахов. Некоторые не любят запах  роз, считая его слишком приторным, - для таких людей можно выращивать розы, благоухающие лимоном. Можно даже вырастить розу, издающую аромат духов  Кельвина Клайна - манипуляции с генами, отвечающими за запах, позволяют вывести растения с любым ароматом. 

              Некоторые особенности новых технологий XXI века могут привести к большим опасностям, чем существующие средства массового уничтожения. Прежде всего, - это способность к саморепликации. Разрушающий и лавинно самовоспроизводящийся объект, специально созданный или случайно оказавшийся вне контроля, может стать средством массового поражения всех или избранных. Для этого не потребуются комплексы заводов, сложная организация и большие ассигнования. Угрозу будет представлять само знание: устройства, изобретённые и изготовленные в единичных экземплярах, могут содержать в себе всё, необходимое для дальнейшего размножения, действия и даже дальнейшей эволюции – изменению своих свойств в заданном направлении. Конечно, выше описаны вероятные, но не гарантированные варианты развития генной инженерии. Успех в этой отрасли науки сможет радикально поднять производительность труда и способствовать решению многих существующих проблем, прежде всего, подъему уровня жизни каждого человека, но, в то же время, и создать новые разрушительные средства. 

     Мало  кого сейчас интересует вопрос, когда  человек сможет свободно ходить по Марсу, намного актуальней споры  о том, когда можно будет клонировать человека и, соответственно, как этого не допустить - этакий реверанс в сторону морали и этики 
 
 
 
 
 
 
 

  II)  П Р О Б Л Е М Ы

             1. Против генной инженерии

 

     В настоящее время генная инженерия  технически несовершенна, так как  она не в состоянии управлять процессом встраивания нового гена. Поэтому невозможно предвидеть место встраивания и эффекты добавленного гена. Даже в том случае, если местоположение гена окажется возможным установить после его встраивания в геном, имеющиеся сведения о ДНК очень неполны для того, чтобы предсказать результаты.

     В середине 1998 года английский ученый Арпад Пустаи на основании проведенных опытов впервые заявил о том, что употребление подопытными крысами генетически модифицированного картофеля привело к серьезным повреждениям их внутренних органов и иммунной системы. У животных возник целый набор серьезных изменений желудочно-кишечного тракта, печени, зоба, селезенки. Но самое зловещее - уменьшился объем мозга. 

     Это заявление вызвало противоречивую реакцию научной общественности. С одной стороны, институт, в котором работал Пустаи, заявил, что результаты его исследований являются необъективными.

     Однако  независимая комиссия, созданная  из 20 ученых из разных стран, признала, что выводы Пустаи правильны, а безвредность генетически модифицированных продуктов действительно подлежит существенной переоценке.

     Дополнительным  подтверждением того, что воздействие  генетически измененных продуктов  на организм человека и окружающую среду является мало изучено, стало  заявление года ученого Джона Лузи.

     Так, в мае 1999 года он сообщил о том, что пыльца генетически модифицированной пшеницы, изначально содержащая небольшую  долю пестицидов, способна убивать  личинок бабочки-данаиды.

     В то же время некоторые ученые опять  высказали мнение о том, что лабораторные исследования не могут смоделировать условия живой природы, поэтому на них нельзя полностью полагаться.

     В ноябре 1999 года для обсуждения результатов  исследований Пустаи и Лузи была организована специальная научная конференция, однако ее участникам не удалось выработать общего подхода к этому вопросу.

     При этом само существование подобных противоречий свидетельствует, что выведение  генетически модифицированных видов  растений и животных представляет определенную опасность, обусловленную непредсказуемостью их развития и поведения в естественной среде.

PS:        Генетически модифицированные продукты

     На  сегодняшний день существует несколько  сотен генетически изменённых продуктов. Уже на протяжении нескольких лет  их употребляют миллионы людей в большинстве стран мира. Есть данные, что подобными технологиями пользуются для получения продуктов, реализуемых через сеть McDonalds. Многие крупные концерны, типа Unilever, Nestle, Danon и другие используют для производства своих товаров генно-инженерные продукты и экспортируют их во многие страны мира. Но во многих странах такие продукты обязательно должны содержать на упаковке надпись "Сделано из генетически модифицированного продукта".

     Некоторые считают, что, внося изменения в  генный код растения или животного, учёные делают то же самое, что и сама природа. Абсолютно все живые организмы от бактерии до человека - это результат мутаций и естественного отбора.

     Пример. Какое-либо растение выбросило несколько  тысяч семян, и они проросли. Среди  тысяч появившихся ростков некоторые обязательно будут отличаться от родителя, то есть фактически окажутся мутантами. Если изменения вредны для растения, то оно погибнет, а если полезны, то оно даст более приспособленное и совершенное потомство, и так может образоваться новый вид растения. Но если природе для образования новых видов требуется много сто- или тысячелетий, то учёные производят этот процесс за несколько лет. Какой-то принципиальной же разницы нет.

    Какие именно ГМ-растения выращиваются в мире?

     Самые распространенные - соя, кукуруза, масличный  рапс и хлопок. В некоторых странах  для выращивания одобрены трансгенные  помидоры, рис, кабачки. Эксперименты проводятся на подсолнечнике, сахарной свекле, табаке, винограде, деревьях и т. д. В тех  странах, где пока нет разрешения на выращивание трансгенов, проводятся полевые испытания.

    Какие новые характеристики чаще всего «прививают» растениям посредством генной инженерии?

     Чаще  всего культурные растения наделяют устойчивостью к гербицидам, насекомым  или вирусам. Устойчивость к гербицидам позволяет «избранному» растению быть невосприимчивым к смертельным для других дозам химикатов. В результате поле очищается от всех лишних растений, то есть сорняков, а культуры, устойчивые или толерантные (терпимые) к гербицидам, выживают. Чаще всего компания, продающая семена подобных растений, предлагает в наборе и соответствующие гербициды. Устойчивая к насекомым флора становится поистине бесстрашной: например, непобедимый колорадский жук, съедая листик картофеля, погибает. Почти все такие растения содержат встроенный ген природного токсина - земляной бактерии Bacillus thuringiensis. Устойчивость к вирусу растение приобретает благодаря встроенному гену, взятому из этого же самого вируса

    В каких странах выращивают трансгенов?

     Основная  масса трансгенов культивируется в  США, в Канаде, Аргентине, Китае, меньше - в других странах.

     Европа  же очень озабочена. Под натиском общественности и организаций потребителей, которые хотят знать, что они  едят, в некоторых странах введен мораторий на ввоз таких продуктов (Австрия, Франция, Греция, Великобритания, Люксембург). В других принято жесткое требование маркировать генетически измененное продовольствие.

     Австрия и Люксембург запретили производство генных мутантов, а греческие фермеры под черными знаменами и с плакатами в руках ворвались на поля в Беотии, в Центральной Греции, и уничтожили плантации, на которых британская фирма "Зенека" экспериментировала с помидорами. 1300 английских школ исключили из своих меню пищу, содержащую трансгенные растения, а Франция очень неохотно и медленно дает одобрение на продажу любых новых продуктов с чужими генами. В ЕС разрешены только три вида генетически измененных растений, а если точнее - три сорта кукурузы.

     Соя - пока единственная трансгенная культура, разрешенная к применению в России. На подходе - трансгенный картофель, кукуруза и сахарная свекла.

     Если  в 1996 году в мире под трансгенными культурами было занято 1,8 миллионов  гектаров, то в 1999 году уже почти 40 миллионов. То уже в 2001 году не менее 60 миллионов. Это не считая Китая, который не дает официальной информации, но, по оценкам, около миллиона китайских фермеров выращивают трансгенный хлопок примерно на 35 млн. гектаров. Что же ожидать от XXI века!? 
 

     Риски, связанные с применением генной инженерии к продуктам питания, можно разделить на три категории: экологические, медицинские и социально-экономические.  
 
 
 

          1) Экологические риски

     1. Появление супервредителей.

     В сущности, такие уже появились. На Bt-кукурузе и хлопке уже живет коробочный (хлопковый) червь, которому наиболее ценный природный пестицид Bacillus thuringensis (Bt) не приносит вреда. Наивно думать, что вредители на  ухищрения ученых не ответят своим контрударом. Как известно, в экстремальных условиях, а процесс вытеснения вредителей устойчивыми к ним растениями иначе как экстремальным не назовешь, скорость мутаций растет, и неизвестно, сколько понадобится насекомым времени для того, чтобы приспособиться к новым условиям окружающей среды. И все пойдет по новой, только на более высоком уровне.

     2. Нарушение природного баланса.

     Уже доказано, что многие ГМ-растения, такие, как ГМ-табак или технический  рис, применяемый для производства пластика и лекарственных веществ, смертельно опасны для живущих на поле или рядом с ним грызунов. Пока эти растения произрастают лишь на опытных полях, а что произойдет после полного вымирания грызунов в районах их массовых засевов - не берется предсказать никто.

     Нечто подобное случилось с озером Виктория в 60-х годах прошлого века, когда в него поселили нильского окуня. Попав в благоприятную среду и обладая несомненным преимуществом в силе, выносливости и плодовитости, этот водный житель в считанные годы сократил численность конкурирующих видов в несколько десятков раз, а более двухсот видов уничтожил полностью. А спустя десятилетие выяснилось, что в результате этого «переселения» в прибрежной зоне исчезли леса, берега были размыты, а эрозия почвы достигла невиданных доселе размеров.

     3. Выход трансгенов из-под контроля.

     На  каждую упаковку с семенами генетически модифицированного Bt-хлопка фирмы Monsanto нанесена надпись: «Во Флориде не сажать к югу от Тампы (60-е шоссе). Не для коммерческого использования или продажи на Гавайях». Что заставило руководство этого биотехнологического гиганта так ограничить площади посевов своих культур? Оказывается, на Гавайях весьма распространен дикий родственник хлопка Gossypium tomentosum, а в Южной Флориде - Gossypium hirsutum. Оба считаются в хлопководстве сорняками. Если генетически модифицированный хлопок опылит своего родственника-сорняка, то в результате получится устойчивый к действию пестицидов и гербицидов, не боящийся ни жары, ни холода, не угрызаемый жуками и паразитами и страшно плодовитый суперсорняк. Примерно то же может случиться и со многими другими видами культурных растений, таких, как масленичный рапс, картофель, томаты или бобы. У всех них есть и весьма широко распространены дикие сородичи, являющиеся зачастую одними из главных в силу сходства условий жизни сорняками основной культуры.

     Кстати  говоря, даже культурный рапс зачастую является сорняком для других культур, но в силу его изнеженности он считается  сорняком малозначительным. Генетически  модифицированный рапс изнеженным назвать  нельзя. Вооруженный мощью современной  науки, он даст фору в сто очков по выживанию любой культуре. И пшеничные поля весьма быстро могут превратиться в технические рапсовые. Уже были зафиксированы случаи, когда ГМ-рапс наделил устойчивостью к гербицидам свою сорную родственницу - дикую горчицу. Выход один: следует прикрывать прозрачным колпаком всякие посадки генетически модифицированных  растений, чтобы, не дай бог, ни одно семечко, ни одна пылинка не вырвались наружу. 
 

          2) Медицинские риски

     1. Повышенная аллергеноопасность.

     В марте 1996 года ведущий генный инженер, исследователь Университета штата Небраска, подтвердил: при попытке повысить содержание белка в ГМ-сое в нее вместе с геном бразильского ореха был перенесен аллерген. Причем тестирование животных не выявило опасности. Тестирование ГМ-продуктов на аллергиках не входит в обязательную программу испытаний новых продуктов, а поэтому то, что аллерген был вовремя замечен, можно назвать счастливой случайностью, иначе жизни тысяч человек, не переносящих орехов, оказались бы в настоящей опасности.

     По поводу аллергической опасности ГМ-продуктов известный британский ученый, доктор Мэй Ван Хо, сказал: «Нет никаких известных способов предсказать аллергию на ГМ-пищу. Аллергическая реакция обычно возникает спустя некоторое время после появления и развития чувствительности к аллергену».

Информация о работе Современная генная инженерия: успехи и проблемы