Шпаргалка по предмету "Концепции современного естествознания"

Автор работы: Пользователь скрыл имя, 11 Января 2013 в 11:50, шпаргалка

Описание работы

Работа содержит ответы на вопросы по предмету "Концепции современного естествознания".

Файлы: 1 файл

otvety_na_prevye_i_vtorye_voprosy.doc

— 430.50 Кб (Скачать файл)

1.Естествознание. Тенденции в развитии естествознания. Темпы развитияестествознания. Физические революции. Фундаментальные и прикладные науки (сущность и проблемы).

Естествознание-это совокупность наук о природе. Тенденции в развитии естест.: дифференциация и интеграция наук. Дифференциация-разделение наук (вирусология, микробиология). Интеграция- слияние наук(биофизика.) этапы развития: Аристотель(384 – 322 г. До н.э.) основоположник формальной логики, т.е. учении о доказательствах. Во времена Аристотеля было известно 20 наук. Философия  Эпикура (341-270 г. До н.э.)Николай Коперник(1473-1543) творец гелиоцентрической системы мира а так же теории о вращении земли вокруг солнца. Р. Декарт(1596-1650гг) основоположник рационализма. Фундаментальные науки – изучают базисные структуры мира. Прикладные науки – применяют результаты фундаментальных исследований для решения как познавательных, так и социально-практических задач. В недрах прикладной науки рождаются наукоемкие технологии. Фундаментальные науки - позволяют поддерживать высокий уровень прикладных исследований. 5 физических революций: 1)переход от природы в целом к субстанциям 4в до н.э.. разделение агрегатных состояний вещества. 2) 16в. Введение в рассмотрение веществ. Немецкий врач Парацельс прародитель фармакологии. 3) переход к корпускулам (по Ломоносову) , элементам (по Лавуазье0) минимальной частицей которых была названа молекула 18 в. 4) 1824г. Переход к атому( Дальтон) 5)переход к «элементарным частицам» 15в модель атома резерфорда(1911) открыты протон, нейтрон, электрон, развитие атомных технологий.

2. Естествознание – основа современных  наукоёмких технологий. Технологии (понятие, история, классификация). Научно-технические революции. Жизненный  цикл технологии.

Естествознание – основа современных наукоемких технологий. Многие достижения современного естествознания составляют базу наукоемких технологий, связанных со всесторонним изучением объектов и явлений природы. Технология — комплекс организационных мер, операций и приемов, направленных на изготовление, обслуживание, ремонт, эксплуатацию и/или утилизацию изделия с номинальным качеством и оптимальными затратами, и обусловленных текущим уровнем развития науки, техники и общества в целом. уровнем развития науки, техники и общества в целом. Иоганн Бекман ввел термин технология. Технология претерпела значительные изменения: когда-то технология означала простой навык, а в настоящее время технология_ это сложный комплекс знаний, полученных с помощью исследований. Классификация: машиностроительные тех.; информационные, телекоммуникационные инновационные технологии.

Научно-техническая  революция – качественное преобразование технических основ материального про-ва на основе превращения науки в ведущий фактор про-ва. НТР: 1)изобретение паровой машины 18в. 2)научно-технические достижения в обл электричества и химии. 3)создание компьютеров 20в. 3) крупные научные открытия и изобретения в 70-80 гг 20в по направлениям: в электронике, компьютерная автоматизация, новые виды энергетики, технологии новых металлов, биотехнологии. 5)2010-2030.гг

Жизненный цикл технологии: 1)Новейшая технология- любая новая технология, которая имеет высокий потенциал развития; 2)Передовая технология- которая зарекомендовала себя, но еще достаточно новая и имеет небольшое распространение; 3) Современная технология- признанная, является стандартом и на нее повышается спрос; 4)Неновая технология – по-прежнему полезная, но уже существует более новая  и поэтому спрос падает; 5)-устаревшая- заменяется более совершенной, очень малый спрос или полный отказ от нее в пользу новой.

 

3.Инновации.  Виды инноваций. Инновационные  технологии. Жизненный цикл нововведений

Инновации – любое возможное  изменение, происходящее вследствие использования  новых или усовершенствующих  решений технического и др.характера  в процессах про-ва, снабжения, сбыта и т.п. Понятие инновации появляется в 30-х г.XX века и его вводит австрийский экономист Иозеф Шумпетер. Инновации: ТЕХНОЛОГИЧЕСКИЕ (относятся все изменения, затрагивающие средства, методы, технологии про-ва. определяющие НТП), НЕТЕХНОЛОГИЧЕСКИЕ (относятся инновации организационного, правового, социального характера).

 Инновационные технологии – наборы методов и средств, поддерживающих этапы реализации нововведения. Классификация: а) Внедрение- распространение инноваций, достижение практического результата идей; б) Тренинг – подготовка кадров, создание малых предприятий;

В) Консалтинг – консультирование производ.,продавцов., покупателей в  сфере технолог.,технической,экспертной деятельности; Г)Трансферт; Д) Инжиниринг – комплекс инженерно-консультационных услуг коммерческого характера по подготовке и обеспечению процесса про-ва.

Жизненный цикл технологии: 1) Возникновение идеи и появление изобретения.2) Научные исследования и эксперимен. проверка возможности реализации изобрет.3) Появление нового изделия на рынке и формирование спроса.4) Массовое изготовление новых изделий.5)Насыщение рынка.6)Затухание продаж, вытеснение изделия.

4. Техносфера. Особенности развития  технологий. Обновление технологий  и подъёмы в экономике. 

Техносфера- совокупность элементов среды в пределах географической оболочки Земли, созданных из природных веществ трудом и сознательной волей человека и не имеющих аналогов в девственной природе(все, что создано руками человека).Н.Д.Кондратьев-основоположник теории экономических циклов. Продолжительность 1 цикла-40-60лет. В этом цикле наблюд.высокие и низкие эк.темпы.(волна Кондратьева▲-темпы►-время). В цикле происходит внедрение инноваций=>увелич. темп роста экономики. В т.max происходит распростр. технологий и их устарение. Создание и внедрение новых технологий влияют на увеличение темпов развития экономики. Именно инновационный процесс определяет степень прогресса экономической системы. Технологический уклад-совокупность технологий, характерных для определения уровня развития произ-ва. Происход. переход от более низких укладов к более высоким, прогрессивным. Особенности: НТР-качественное преобразование технических основ материального производства на основе превращения науки в ведущий фактор производства.(изобретение паровой машины в 18в., НТ достижения в обл. электричества и химии19в., созд.компьютеров20в, новые крупные научные открытия и изобретения20в70-80гг. по напр.электронике, новые виды энергетики, биотехнологии; 2020-2030гг.) и т.п.

5. Представления о материи, движении, пространстве и времени. Понятие о структурных уровнях организации материи. Мегамир, макромир и микромир.

Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. Материя включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все те, которые в принципе могут быть познаны в будущем на основе совершенствования средств наблюдения и эксперимента.

Движение  материи- любые изменения, происходящие с материальными объектами в результате их взаимодействия. Время- выражает порядок смены физических состоянийи является объективной характеристикой любого процесса или явления. Пространство - выражает порядок сосуществования физических тел. Различают три вида материи- вещество- основной вид материи, обладающий массой; физический вакуум- низшее физическое состояние квантового поля; физическое поле- особый вид материи, обеспечивающий физическое взаимодействие материальных объектов и их систем.

Важнейшее сво-во материи- ее структурная и системная организация, которая выражает упорядоченность существования материи в виде огромного разнообразия материальных объектов, связанных между собой единой системой иерархии. Современная наука выделяет в мире три структурных уровня: Микро, Макро, Мега миры.

Микромир – это молекулы, атомы, элементарные частицы — мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни — от бесконечности до 10-24 с.

Макромир — мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время — в секундах, минутах, часах, годах.

Мегамир — это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов — миллионами и миллиардами лет.

6. Фундаментальные взаимодействия.

Концепция дальнодействия – взаимодействие материальных объектов, находящихся даже на большом расстоянии друг от друга передается через пустое пространство мгновенно. Концепция близкодействия – взаимодействие передается по средствам физических полей с конечной скоростью, не превышающей скорости света.

Современные экспериментальные  данные свидетельствуют, что существует только четыре качественно различных вида взаимодействий, в которых участвуют элементарные частицы. Эти взаимодействия называются фундаментальными, то есть самыми основными, исходными, первичными. По мере увеличения интенсивности фундаментальные взаимодействия располагаются в следующем порядке: гравитационное, слабое, электромагнитное и сильное. Каждое из этих взаимодействий характеризуется соответствующим параметром, называемым константой связи, численное значение которого определяет интенсивность взаимодействия. Гравитационное взаимодействие характерно для всех материальных объектов вне зависимости от их природы. Оно заключается во взаимном притяжении тел и определяется фундаментальным законом всемирного тяготения. Гравитационным взаимодействием определяется падение тел в поле сил тяготения Земли. Законом всемирного тяготения описывается движение планет Солнечной системы, а также других макрообъектов. Предполагается, что гравитационное взаимодействие обусловливается некими элементарными частицами - гравитонами, существование которых к настоящему времени экспериментально не подтверждено. Электромагнитное взаимодействие обуславливается электрическими зарядами и передается электрическим и магнитным полями. Электрическое поле возникает при наличии электрических зарядов, а магнитное поле - при их движении. В природе существуют как положительные, так и отрицательные заряды, что и определяет характер электромагнитного взаимодействия. Например, при движении зарядов в зависимости от их знака и направления движения между ними возникает либо притяжение, либо отталкивание. Электромагнитное взаимодействие описывается фундаментальными законами электростатики и электродинамики: законом Кулона, законом Ампера и др. Наконец, слабое взаимодействие описывает некоторые виды ядерных процессов. В нем участвуют все элементарные частицы, кроме фотона. Оно короткодействующее и характеризует все виды бета-превращений. Сильное взаимодействие обеспечивает связь нуклонов в ядре, отвечает за стабильность атомных ядер.

7. Механика как основа многих технологий. Основные законы и понятия механики.

Механика – наука о механическом движении материальных тел и происходящих при этом взаимодействиях между телами. Под механическим движением понимают изменение с течением времени взаимного положения тел или их частиц в пространстве. Рассматриваемые в М. взаимодействия представляют собой те действия тел друг на друга, результатом которых являются изменения механического движения этих тел. Их примерами могут быть притяжения тел по закону всемирного тяготения, взаимные давления соприкасающихся тел, воздействия частиц жидкости или газа друг на друга и на движущиеся в них тела и др. Обычно под М. понимают т. н. классическую М., в основе которой лежат Ньютона законы механики и предметом которой является изучение движения любых материальных тел (кроме элементарных частиц), совершаемого со скоростями, малыми по сравнению со скоростью света.

При изучении движения материальных тел в М. вводят ряд  абстрактных понятий, отражающих те или иные свойства реальных тел; таковы: 1) Материальная точка — объект пренебрежимо малых размеров, имеющий массу; это понятие применимо, если в изучаемом движении можно пренебречь размерами тела по сравнению с расстояниями, проходимыми его точками. 2) Абсолютно твёрдое тело — тело, расстояние между двумя любыми точками которого всегда остаётся неизменным; это понятие применимо, когда можно пренебречь деформацией тела. 3) Сплошная изменяемая среда; это понятие применимо, когда при изучении движения изменяемой среды (деформируемого тела, жидкости, газа) можно пренебречь молекулярной структурой среды.

М. разделяют  на: М. материальной точки, М. системы  материальных точек, М. абсолютно твёрдого тела и М. сплошной среды. В каждом из этих разделов в соответствии с  характером решаемых задач выделяют: статику — учение о равновесии тел под действием сил, кинематику — учение о геометрических свойствах движения тел и динамику — учение о движении тел под действием сил. В динамике рассматриваются 2 основные задачи: нахождение сил, под действием которых может происходить данное движение тела, и определение движения тела, когда известны действующие на него силы. Основные понятия и методы механики.: основными кинематическими мерами движения в М. являются: для точки — её скорость и ускорение, а для твёрдого тела — скорость и ускорение поступательного движения и угловая скорость и угловое ускорение вращательного движения тела. Основной мерой механического взаимодействия материальных тел в М. является сила. Одновременно в М. широко пользуются понятием момента силы относительно точки и относительно оси. В основе М. лежат законы Ньютона.

Первый  закон Ньютона - Существуют такие системы отсчета, относительно которых тела сохраняют свою скорость постоянной, если на них не действуют другие тела и поля (или их действие взаимно скомпенсировано).

Второй  закон Ньютона- В инерциальной системе отсчета ускорение, которое получает материальная точка, прямо пропорционально приложенной к ней силе и обратно пропорционально её массе.F=m*a

Третий  закон Ньютона- Тела действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль одной и той же прямой, равными по модулю и противоположными по направлению:F2->1 = -F1->2

Важное значение для решения задач М. имеют  понятия о динамических мерах  движения, которыми являются количество движения, момент количества движения (или кинетический момент) и кинетическая энергия, и о мерах действия силы, каковыми служат импульс силы и работа. Соотношение между мерами движения и мерами действия силы дают теоремы об изменении количества движения, момента количества движения и кинетической энергии, называемые общими теоремами динамики. Эти теоремы и вытекающие из них законы сохранения количества движения, момента количества движения и механической энергии выражают свойства движения любой системы материальных точек и сплошной среды.

8. Законы сохранения количества  движения (импульса), энергии и момента  количества движения, их применение  в технике и технологиях. Принцип  реактивного движения.

Из свойства симметрии пр-ва — его однородности следует закон сохранения импульса, импульс замкнутой сис-мы сохраняется, т. е. не изменяется с течением времени. Закон сохранения импульса справедлив не только в классической физике. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц, подчиняющихся законам квантовой механики. Импульс сохраняется для незамкнутой сис-мы, если геометрическая сумма всех внешних сила равна нулю. Закон сохранения импульса носит универсальный характер и является фундаментальным законом природы.

Однородность времени означает инвариантность физических законов относительно выбора начала отсчета времени. Из однородности времени следует закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем. Консервативные силы действуют только в потенциальных полях, характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Механические сис-мы, на тела которой действуют только консервативные силы (внутренние и внешние), называются консервативными сис-мами. Закон сохранения и превращения энергии — фундаментальный закон природы; он справедлив как для систем макроскопических тел, так и для микросистем.

Информация о работе Шпаргалка по предмету "Концепции современного естествознания"