Понятие системы, классификация систем

Автор работы: Пользователь скрыл имя, 18 Декабря 2013 в 17:37, реферат

Описание работы

В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира может быть рассмотрен как сложное образование, включающее составные части, организованные в целое. Для обозначения этой целостности в науке выработано понятие системы.
В системном анализе исследования строятся на использовании категории системы, под которой понимается единство взаимосвязанных и взаимовлияющих элементов, расположенных в определенной закономерности в пространстве и во времени, совместно действующих для достижения общей цели.

Содержание работы

Введение 3
1. Понятие системы, ее элементы и отличие системы от агрегата 4
2. Структура и классификация систем 5
Заключение 11
Список использованной литературы 12

Файлы: 1 файл

Реферат по ЕСТЕСТВОЗНАНИЮ.doc

— 67.00 Кб (Скачать файл)

ОГЛАВЛЕНИЕ

 

 

Введение

 

В современной науке  в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира может быть рассмотрен как сложное образование, включающее составные части, организованные в целое. Для обозначения этой целостности в науке выработано понятие системы.

В системном анализе  исследования строятся на использовании  категории системы, под которой понимается единство взаимосвязанных и взаимовлияющих элементов, расположенных в определенной закономерности в пространстве и во времени, совместно действующих для достижения общей цели.

 

 

1. Понятие системы, ее элементы и отличие системы от агрегата

В классической физике система  понимается как совокупность каких-то частей, связанных между собой  определенным образом. Эти части (элементы) системы могут воздействовать друг на друга, и предполагается, что их взаимовоздействие всегда может оцениваться с позиций причинно-следственных отношений между взаимодействующими элементами системы.

Система должна удовлетворять  двум требованиям:

  1. Поведение каждого элемента системы влияет на поведение системы в целом;  существенные свойства системы теряются, когда она расчленяется.
  2. Поведение элементов системы и их  воздействие на целое взаимозависимы; существенные свойства элементов системы при их отделении от системы также теряются. Гегель писал о том, что рука, отделенная от организма, перестает быть рукой, потому что она не живая.

Таким образом, свойства, поведение или состояние, которыми обладает система, отличаются от свойств, поведения или состояния образующих ее элементов (подсистем). Система  — это целое, которое нельзя понять путем анализа. Система — это множество элементов, которое нельзя разделить на независимые части.

Совокупность свойств элементов  системы не представляет собой общего свойства системы, а дает некоторое новое свойство. Для любой системы характерно наличие собственной, специфической закономерности действия, невыводимой непосредственно из одних лишь способов действия образующих ее элементов.

Всякая система является развивающейся  системой, она имеет свое начало в прошлом и продолжение в будущем.

Понятие системы —  это способ найти простое в  сложном в целях упрощения  анализа.

Но не всякая совокупность или целое образуют систему и в связи с этим ввели понятие агрегата. АГРЕГАТ (лат. aggrego - присоединяю - механическое соединение в целое разнородных частей и объектов.

Но всякая система  есть целое, образованное взаимосвязанными и взаимодействующими его частями.

Важнейшими характерными чертами больших систем являются:

  1. Целенаправленность и управляемость системы, наличие у всей системы общей цели  и назначения, задаваемых и корректируемых в системах более высоких уровней;
  2. Сложная иерархическая структура организации системы, предусматривающая сочетание централизованного управления с автономностью частей;
  3. Большой размер системы, то есть большое число частей и элементов, входов и  выходов, разнообразие выполняемых функций и т. д.;
  4. Целостность и сложность поведения. Сложные, переплетающиеся взаимоотношения между переменными, включая петли обратной связи, приводят к тому, что изменение одной влечет изменение многих других переменных.

К большим системам относятся  крупные производственно-экономические  системы (например, холдинги), города, строительные и научно-исследовательские комплексы.

2. Структура и классификация систем

Теория относительности, изучающая универсальные физические закономерности, относящиеся ко всей Вселенной, и квантовая механика, изучающая законы микромира, нелегки для понимания, и тем не менее они имеют дело с системами, которые с точки зрения современного естествознания считаются простыми. Простыми в том смысле, что в них входит небольшое число переменных, и поэтому взаимоотношение между ними поддается математической обработке и выведению универсальных законов.

Однако, помимо простых, существуют сложные системы, которые состоят из большого числа переменных и стало быть большого количества связей между ними. Чем оно больше, тем труднее поддается предмет исследования достижению конечного результата — выведению закономерностей функционирования данного объекта. Трудности изучения данных систем связаны и с тем обстоятельством, что чем сложнее система, тем больше у нее так называемых эмерджентных свойств, т. е. свойств, которых нет у ее частей и которые являются следствием эффекта целостности системы.

Такие сложные системы изучает, например, метеорология — наука  о климатических процессах. Именно потому, что метеорология изучает сложные системы, процессы образования погоды гораздо менее известны, чем гравитационные процессы, что, на первый взгляд, кажется парадоксом. Действительно, почему мы точно можем определить, в какой точке будет находиться Земля или какое-либо другое небесное тело через миллионы лет, но не можем точно предсказать погоду на завтра? Потому, что климатические процессы представляют гораздо более сложные системы, состоящие из огромного количества переменных и взаимодействий между ними.

Разделение систем на простые и  сложные является фундаментальным  в естествознании. Среди всех сложных  систем наибольший интерес представляют системы с так называемой «обратной связью». Это еще одно важное понятие современного естествознания.

Различают физические и  абстрактные системы. Физические системы состоят из людей, изделий, оборудования, машин и прочих реальных или искусственных объектов. Им противопоставлены абстрактные системы. В последних свойства объектов, существование которых может быть неизвестным, за исключением их существования в уме исследователя, представляют символы. Идеи, планы, гипотезы и понятия, находящиеся в поле зрения исследователя, могут быть описаны как абстрактные системы.

В зависимости от своего происхождения  выделяют естественные системы (например, климат, почва) и сделанные человеком.

По степени связи с внешней  средой системы классифицируют на открытые и закрытые.

Открытые системы — это системы, которые обмениваются материально-информационными ресурсами или энергией с окружающей средой регулярным и понятным образом.

Противоположностью открытым системам являются закрытые.

Закрытые системы действуют с относительно небольшим обменом энергией или материалами с окружающей средой, например химическая реакция, протекающая в герметически закрытом сосуде.

Немецкий  физик Рудольф  Клаузиус использовал понятие энтропии – изменение порядка в системе. Когда энтропия в системе возрастает, то соответственно усиливается беспорядок в системе.   ТО ЕСТЬ:

Энтропия замкнутой системы, т.е. системы, которая не обменивается с  окружением ни энергией, ни веществом, постоянно возрастает.

Это означает, что такие  системы эволюционируют в сторону увеличения в них хаоса и беспорядка, пока не достигнут точки термодинамического равновесия, в которой всякое производство работы становится невозможным.

Термодинамика впервые  ввела в физику понятие времени  весьма в своеобразной форме, а именно необратимого процесса возрастания энтропии в системе.  Чем выше энтропия системы, тем больше временной промежуток прошла система в своей эволюции.

В отличие от закрытых, или изолированных, открытые системы  обмениваются с окружающей средой энергией, веществом и информацией. Все реальные системы являются именно открытыми.

В открытых системах также  производится энтропия, т.к. в них  происходят необратимые процессы, но энтропия в этих системах не накапливается, как в закрытых системах, а выводится  в окружающую среду. Так как энтропия характеризует степень беспорядка в системе, то можно сказать, что открытые системы живут за счет заимствования порядка из внешней среды.

Взаимодействуя со средой, открытая система не может оставаться замкнутой, т.к. вынужденно взаимодействует извне либо новое вещество, или свежую энергию и одновременно выводить в среду использованное вещество и отработанную энергию.

В ходе своей эволюции система постоянно  обменивается энергией с окружающей средой, а  следовательно производит энтропию. Но в отличие от закрытых систем эта энтропия, характеризующая степень беспорядка в системе, не накапливается в ней, а удаляется в окружающую среду. Это означает, что использованная, отработанная энергия рассеивается в окружающей среде и взамен её из среды извлекается новая, свежая энергия, способная производить полезную работу.

По типу составных  частей, входящих в систему, последние  можно классифицировать на машинные (автомобиль, станок), по типу «человек — машина» (самолет — пилот)  и по типу «человек—человек» (коллектив организации).

По целевым признакам  различают: одноцелевые системы, то есть предназначенные для решения одной единственной целевой задачи и многоцелевые. Кроме того, можно  выделить функциональные системы, обеспечивающие решение или рассмотрение отдельной стороны или аспекта задачи (планирование, снабжение и т. п.).

Неклассическая термодинамика  изучает реальный мир открытых систем, проявляющийся в неживой и  живой природе, с позиций синергетики. Это потребовало новых идей, понятий  образов, а также пересмотра старых. В большей степени это относится к представлениям о порядке и хаосе. В синергетике хаос – это то, что отличается от порядка некоей структуры. Это не полное отсутствие структуры, а тоже структура, но определенного типа (как бы нарушенная структура). Под структурой понимается совокупность устойчивых связей объекта (с другими объектами), обеспечивающая его целостность. Иначе говоря, структура – это взаиморасположение и связь составных частей чего-либо, то есть определенная организация объекта. Она характеризуется устойчивостью, четкостью внутренних связей, способностью к сопротивлению внешним факторам и изменениям. Структура – ключевое понятие в синергетике (самоорганизации). Открытые системы, как уже указывалось, постоянно обмениваются со средой энергией и веществом, находясь в относительно стабильном термодинамическом неравновесии. Биологической системе (живому организму) для устойчивого динамического состояния характерно минимальное производство энтропии, а для неустойчивого стационарного – максимальное неживое состояние. Вероятнее всего, что развитие живого осуществляется через неустойчивости, хотя в целом оно стремится к устойчивому состоянию на микроскопическом уровне за счет запасенной свободной энергии. При стремлении к устойчивому состоянию организм «сбрасывает» в окружающую среду ненужный избыток энтропии, тем самым постоянно поддерживая неравновесное термодинамическое состояние.

Диссипативная структура – одно из основных понятий теории структур И. Пригожина. Система в целом может быть неравновесной, но уже определенным образом несколько упорядоченной, организованной. Такие системы И. Пригожин назвал диссипативными структурами (от лат. dissipation – разгонять, рассеивать свободную энергию), в которых при значительных отклонениях от равновесия возникают упорядоченные состояния. В процессе образования этих структур энтропия возрастает, изменяются и другие термодинамические функции системы. Это свидетельствует о сохранении в целом ее хаотичности. Диссипация как процесс рассеяния энергии играет важную роль в образовании структур в открытых системах. В большинстве случаев диссипация реализуется в виде перехода избыточной энергии в тепло. Образование новых типов структур указывает на переход от хаоса и беспорядка к организации и порядку. Эти диссипативные динамические микроструктуры являются прообразами будущих состояний системы, так называемых фракталов (от лат. fractus – дробный, изрезанный). Большинство фракталов либо разрушается, полностью так и не сформировавшись (если они оказываются невыгодными с точки зрения фундаментальных законов природы), либо иногда остаются как отдельные архаичные остатки прошлого (например, древние обычаи народов, древние слова и т. д.). В точке бифуркации (точке ветвления) идет своеобразный естественный отбор фрактальных образований. «Выживает» образование, оказавшееся наиболее приспособленным к условиям окружающей среды.

При благоприятных условиях новая структура (фрактал) «разрастается» и преобразуется постепенно в  новую макроструктуру – аттрактор. При этом система переходит в новое качественное состояние. В этом новом состоянии система продолжает свое наступательное движение до следующей точки бифуркации, то есть до следующего неравновесного фазового перехода.

В целом диссипация как  процесс рассеивания энергии, затухания движения и информации играет весьма конструктивную роль в образовании новых структур в открытых системах. Для диссипативной системы невозможно предсказать конкретный путь развития, поскольку трудно предугадать начальные реальные условия ее состояния.

 

Заключение

Таким образом, система понимается как совокупность каких-то частей, связанных между собой определенным образом. Эти части (элементы) системы могут воздействовать друг на друга.

Система должна удовлетворять  двум требованиям. Но не всякая совокупность или целое образуют систему и в связи с этим ввели понятие агрегата - механическое соединение в целое разнородных частей и объектов.

Системы бывают: простые и сложные, физические и абстрактные системы, естественные системы (например, климат, почва) и сделанные человеком. По степени связи с внешней средой системы классифицируют на открытые и закрытые. По типу составных частей, входящих в систему, последние можно классифицировать на машинные, по типу «человек — машина» и по типу «человек—человек». По целевым признакам различают: одноцелевые системы, то есть предназначенные для решения одной единственной целевой задачи и многоцелевые. Кроме того, можно  выделить функциональные системы, обеспечивающие решение или рассмотрение отдельной стороны или аспекта задачи (планирование, снабжение и т. п.).

Информация о работе Понятие системы, классификация систем