Космологические модели вселенной

Автор работы: Пользователь скрыл имя, 03 Июля 2013 в 12:43, курсовая работа

Описание работы

С древних времен взоры людей были устремлены в небо. Человек в поисках ответов о вопросах мироздания, старался понять, как устроен этот мир, что такое в этом мире Солнце, звезды, планеты, как они возникли, имеет ли Вселенная свое начало, и будет ли иметь свой конец? Он пытался осознать свое место в нем. Интересные представления о Вселенной были у древних мыслителей, однако истинно научные представления о Вселенной могли возникнуть только с созданием общей теории относительности.

Содержание работы

Введение…………………………………………………………………...2
Что такое космология……………………………………………………..2
Вселенная Эйнштейна…………………………………………………….3
Нестационарная космология Фридмана………………………………....4
Эффект Доплера……………………………………………………………..6
Модели Вселенной………………………………………………………..7
5.1 Классическая космологическая модель…………………………….7
5.2 Релятивистская модель Вселенной…………………………………9
5.3 Модель расширяющейся Вселенной………………………………11
5.4 Модель Большого взрыва……………………………………………………...12
5.5 Инфляционная модель Вселенной……………………………………………14
Заключение………………………………………………………………16
Список использованной литературы…….…………………………......16

Файлы: 1 файл

0504045_70CC3_kosmologicheskie_modeli_vselennoy.doc

— 112.00 Кб (Скачать файл)

   Гравитационный парадокс

В конце XIXв. немецкий астроном К.Зеелигер обратил внимание на другой парадокс, также вытекавший из представлений о бесконечности Вселенной. В бесконечной Вселенной с равномерно распределенными в ней телами сила тяготения со стороны всех тел Вселенной на данное тело оказывается бесконечно большой или неопределенной (результат зависит от способа вычисления). Поскольку этого не происходит, Зеелигер сделал вывод, что количество небесных тел во Вселенной ограничено, а значит, и сама Вселенная небесконечна. Это утверждение получило название гравитационного парадокса.

    Термодинамический парадокс был сформулирован также в XIXв. Он вытекает из второго начала термодинамики — принципа возрастания энтропии. Мир полон энергии, которая подчиняется закону сохранения энергии. Кажется, что из этого закона неизбежно вытекает вечный круговорот материи во Вселенной. Если в природе материя не исчезает и не возникает из ничего, а лишь переходит из одной формы существования в другую, то Вселенная вечна, а материя пребывает в постоянном круговороте. Таким образом, погасшие звезды снова превращаются в источник света и тепла.

Поэтому неожиданно прозвучал вывод  из второго начала термодинамики, открытого  в середине XIXв. Кельвином и Р.Ю.Э.Клаузиусом. При всех превращениях различные виды энергии в конечном счете переходят в тепло, которое стремится к состоянию термодинамического равновесия, т.е. рассеивается в пространстве. Так как такой процесс рассеяния тепла необратим, то рано или поздно все звезды погаснут, все активные процессы в природе прекратятся, наступит «тепловая смерть Вселенной».

Таким образом, три космологических  парадокса заставили ученых усомниться в классической космологической  модели Вселенной, побудили их к поискам  новых непротиворечивых моделей.

 

 

5.2 Релятивистская модель Вселенной

     Понятие  релятивистской космологии. Поскольку именно тяготение определяет взаимодействие масс на больших расстояниях, а значит, динамику космической материи в масштабах Вселенной, то теоретическим ядром космологии выступает теория тяготения, а современной космологии -  релятивистская теория тяготения. Поэтому современную космологию называют релятивистской.

          Вселенная Эйнштейна пространственно  конечна; она имеет конечные  размеры, но не имеет границ! В этой модели пространственный  объем Вселенной с равномерно  распределенными в нем галактиками конечен; но границ у этого пространства нет. Оно не распространено бесконечно во все стороны, а замыкается само на себя. Как и на поверхности сферы, в нем можно совершать «кругосветные» путешествия: обитатель такой вселенной мог бы, послав в каком-либо направлении (световой или радио) сигнал, со временем обнаружить, что этот сигнал вернулся к нему с противоположной стороны, обойдя всю Вселенную.

         Как и многие другие абстрактные  понятия современной физики и  астрономии, идея замкнутой, конечной, но неограниченной вселенной трудно представима в наглядных образах. Поэтому часто спрашивают, что же находится «снаружи» конечной вселенной.

         Дело в том, что этот вопрос  не имеет смысла для трехмерных  существ, т.е. в пространственно-временной  метрике нашего мира. Как не имеет смысла аналогичный вопрос, что находится «вне» поверхности сферы, для плоских существ, вынужденных постоянно жить на сферической поверхности. В такой вселенной просто нет понятия «снаружи». Ведь различение «снаружи» и «внутри» предполагает некоторую границу, которой на самом деле нет, и каждая точка в ней эквивалентна любой другой - ни края, ни центра здесь нет.

Новая модель Вселенной  была создана в 1917 г. А.Эйнштейном. Ее основу составила релятивистская теория тяготения. Эйнштейн отказался от постулатов абсолютности и бесконечности пространства и времени, однако сохранил принцип стационарности, неизменности Вселенной во времени и ее конечности в пространстве. Свойства Вселенной, по мнению Эйнштейна, определяются распределением в ней гравитационных масс, Вселенная безгранична, но при этом замкнута в пространстве. Согласно этой модели пространство однородно и изотропно, т.е. во всех направлениях имеет одинаковые свойства; материя распределена в нем равномерно; время бесконечно, а его течение не влияет на свойства Вселенной. На основании своих расчетов Эйнштейн сделал вывод, что мировое пространство представляет собой четырехмерную сферу.

Объем такой Вселенной  может быть выражен, хотя и очень  большим, но конечным числом кубометров. Но конечная по объему Вселенная в то же время безгранична, как поверхность любой сферы. Вселенная Эйнштейна содержит ограниченное число звезд и звездных систем, а поэтому к ней неприменимы фотометрический и гравитационный парадоксы. В то же время призрак тепловой смерти тяготеет и над Вселенной Эйнштейна. Вечность ей не присуща.

Таким образом, несмотря на новизну и даже революционность  идей, Эйнштейн в своей космологической  теории ориентировался на привычную  классическую мировоззренческую установку  на статичность мира.

 

5.3 Модель расширяющейся Вселенной

   Нестационарная  релятивистская космология. С критикой  предложенной Эйнштейном космологической  модели выступил наш отечественный  выдающийся математик и физик-теоретик А.А.Фридман. Именно А.А.Фридман, опубликовавший свою работу в 1922г., впервые сделал из общей теории относительности космологические выводы, имеющие поистине революционное значение: он заложил основы нестационарной релятивистской космологии. Фридман показал, что теоретическая модель Эйнштейна является лишь частным решением гравитационных уравнений для однородных и изотропных моделей, а в общем случае решения зависят от времени.

      А.А.Фридман на основании строгих расчетов установил, что Вселенная никак не может быть стационарной. Фридман сделал это открытие, опираясь на сформулированный им космологический принцип, строящийся на двух предположениях: об изотропности и однородности Вселенной. Изотропность Вселенной понимается как отсутствие выделенных направлений, одинаковость Вселенной по всем направлениям. Однородность Вселенной понимается как одинаковость всех точек Вселенной.

Фридман доказал, что  уравнения Эйнштейна имеют решения, согласно которым Вселенная может  расширяться либо сжиматься. При  этом речь шла о расширении самого пространства, т.е. об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются.

Первоначально модель расширяющейся  Вселенной носила гипотетический характер и не имела эмпирического подтверждения. Однако в 1929г. американский астроном Э. П. Хаббл обнаружил эффект «красного смещения» спектральных линий (смещение линий к красному концу спектра). Это было истолковано как следствие эффекта Допплера - изменение частоты колебаний или длины волн из-за движения источника волн и наблюдателя по отношению друг к другу. Красное смещение было объяснено как следствие удаления галактик друг от друга со скоростью, возрастающей с расстоянием (примерно 55 км/с на каждый миллион парсек).

В результате своих наблюдений Хаббл обосновал представление, согласно которому Вселенная - это множество  галактик, разделенных между собой  огромными расстояниями. Фридман  предложил три модели Вселенной.

А. А. Фридман показал, что решения уравнений общей теории относительности для Вселенной позволяют построить три возможные модели Вселенной. В двух из них радиус кривизны пространства монотонно растет и Вселенная бесконечно расширяется (в одной модели - из точки; в другой - начиная с некоторого конечного объема). Третья модель рисовала картину пульсирующей Вселенной с периодически изменяющимся радиусом кривизны. Выбор моделей зависит от средней плотности вещества во Вселенной.

По какому из этих вариантов  идет эволюция Вселенной, зависит от отношения гравитационной энергии к кинетической энергии разлета вещества.

Если кинетическая энергия  разлета вещества преобладает над  гравитационной энергией, препятствующей разлету, то силы тяготения не остановят  разбегания галактик, и расширение Вселенной будет носить необратимый характер. Этот вариант динамичной модели Вселенной называют «открытой Вселенной».

    Если же  преобладает гравитационное взаимодействие, то темп расширения со временем  замедлится до полной остановки,  после чего начнется сжатие  вещества плоть до возврата Вселенной в исходное состояние сингулярности (точечный объем с бесконечно большой плотностью). Такой вариант модели назван осциллирующей, или «закрытой Вселенной».

В случае, когда силы гравитации равны энергии разлета вещества, расширение не прекратится, но его скорость со временем будет стремиться к нулю.

 

5.4 Модель Большого взрыва.

 

Теория Большого Взрыва (Big Bang) смогла к настоящему времени объяснить почти все факты, связанные с космологией.

В основе этой теории лежит  предположение, что физическая Вселенная образовалась  в результате гигантского взрыва примерно  15-20 миллиардов лет назад, когда всё вещество и энергия современной Вселенной  были сконцентрированы в одном сгустке. Плотностью свыше 10 в 25 степени г/см в кубе и температурой свыше10 в 16 К. Такое представление соответствует модели горячей Вселенной. Модель Большого Взрыва (БВ) была предложена в 1948 г. Г.А.Гамовым.

Обращаясь к сгустку  перед Большим Взрывом, отметим, что неизвестно достоверно, как этот сгусток образовался. Из чего? И откуда взялось такое гигантское количество изначальной энергии? Тем не менее, огромное радиационное давление внутри этого сгустка привело к необычайно быстрому её расширению – Большому Взрыву. Составные части этого сгустка теперь образуют далекие галактика, очень быстро удаляющиеся от нас. Мы наблюдаем их сейчас такими, какими они были примерно 10-14 млрд. лет назад. Таким образом, расширение Вселенной оказывается естественным следствием теории Большого Взрыва. Открытие расширяющейся Вселенной  и принятие научным сообществом этого факта можно считать огромным мировоззренческим  прорывом в интеллектуальном мире.

Г.А. Гамов также предположил, что все элементы Вселенной образовались в результате ядерных реакций  в первые моменты после Большого Взрыва. Дальнейшие уточнения этой теории показали, что ядерные реакции действительно имели место, но привели только к образованию гелия. Спектр гелия наблюдали в солнечном излучении до того, как он был обнаружен на Земле, отсюда и название этого элемента происходит от греческого Гелиос – Солнце. Современные методы анализа излучения звезд и галактик показали, что почти все они состоят из водорода (~60%) и гелия (~20%). Лишь малая часть водорода и гелия содержится в звездах, остальное количество распределено в межзвездном пространстве. В звездах, где температура исключительно велика, атомы полностью ионизированы и составляют высокотемпературную плазму. В межзвездном пространстве  водород и гелий находятся в основном в атомарном состоянии. Таким образом, теория БВ согласуется с наблюдаемой распространенностью гелия во Вселенной.

Рассмотрим вариант  образования сгустка первовещества. Предполагается, что эти межзвездные  атомы водорода и гелия  служат сырьем для образования новых  звезд. Распределение газа в межзвездном  пространстве неоднородно. Средняя концентрация вещества в нашей Галактике ~1 атом/см. в кубе, однако имеются сильные флуктуации, а именно случайные отклонения системы от равновесия. Эти флуктуации объясняются хаотическим движением атомов в пространстве. Случайно плотность  вещества в определенной области может существенно превысить среднюю. При этом предполагается, что если количество вещества превысит в какой-либо области критическое значение, порядка 1000 солнечных масс, то в этой области возникают достаточно сильные гравитационные поля, способные противостоять разлету газового облака и стремящиеся сжать его до возможно меньших размеров. Тогда возникает гипотеза: образование из межзвездной пыли сгустка, гигантское уплотнение и взрыв.

 

5.5 Инфляционная модель Вселенной

Долгое время ничего нельзя было сказать о причинах Большого взрыва, переходе к расширению Вселенной. Но сегодня появились некоторые  гипотезы, пытающиеся объяснить эти процессы. Они лежат в основе инфляционной модели развития Вселенной.

«Начало» Вселенной. Основная идея концепции Большого взрыва состоит в том, что Вселенная на ранних стадиях возникновения имела неустойчивое вакуумоподобное состояние с большой плотностью энергии, возникшей из квантового излучения, т. е. из ничего. В вакууме отсутствуют фиксируемые частицы, поля и волны, но пока вакуум находится в равновесном состоянии, в нем существуют виртуальные частицы, которые берут у вакуума энергию на короткий промежуток времени, чтобы родиться, быстро вернуть занятую энергию и исчезнуть. Когда же вакуум по какой-то причине в некоторой исходной точке (сингулярности) вышел из состояния равновесия, то виртуальные частицы стали схватывать энергию без отдачи и превращаться в реальные. Поэтому в определенной точке пространства образовалось огромное количество последних. Когда же возбужденный вакуум разрушился, высвободилась гигантская энергия излучения, а суперсила сжала частицы в сверхплотную материю. Начинается стремительное расширение Вселенной, возникают время и пространство.

Инфляционный период - 10-33 с после начала расширения Вселенной, за которые ее размеры увеличились в 1050 раз.

К концу фазы инфляции Вселенная была пустой и холодной, но когда инфляция иссякла, Вселенная  стала чрезвычайно «горячей» (1027 К). С этого момента Вселенная  развивается согласно стандартной теории «горячего» Большого взрыва.

Ранний этап эволюции Вселенной. Эволюция Вселенной происходила  поэтапно и сопровождалась, с одной  стороны, дифференциацией, а с другой — усложнением ее структур. Этапы  различаются характеристиками взаимодействия элементарных частиц и называются эрами.

Адронная эра продолжалась 10-7 с. На этом этапе температура понизилась до 1013 К, появились все четыре фундаментальных  взаимодействия, прекратилось свободное  существование кварков.

Лептонная эра продолжалась 1с. Температура Вселенной понизилась до Ш10 К. Главными ее элементами были лептоны. В конце этой эры вещество стало прозрачным для нейтрино.

Эра излучения (фотонная эра) продолжалась 1 млн лет. За это  время температура Вселенной  снизилась с 10 млрд К до 3000 К. На протяжении данного этапа происходило соединение протонов и нейтронов. К концу этого этапа Вселенная стала прозрачной для фотонов, так как излучение отделилось от вещества и образовало реликтовое излучение.

Информация о работе Космологические модели вселенной