Химия как раздел современного естествознания

Автор работы: Пользователь скрыл имя, 26 Марта 2012 в 23:56, реферат

Описание работы

Естествознание – наука о явлениях и законах природы. Современное естествознание включает многие естественнонаучные отрасли: физику, химию, биологию, а также смежные отрасли, такие, как физическая химия, биофизика, биохимия и т.п. Естествознание затрагивает широкий спектр вопросов о многочисленных и многосторонних проявлениях свойств природы, которую можно рассматривать как единое целое.

Содержание работы

Введение ……………………………………………………………………….3
1. «Химический взгляд» на природу: истоки и современное состояние…5
2. Основные структурные уровни химии и ее разделы……………………8
3. Основные принципы и законы химии……………….………………….11
4. Химическая связь и химическая кинетика……………………………...14
Заключение……………………………………………………………………17
Список использованной литературы………………………………………...22

Файлы: 1 файл

КСЕ - реферат.doc

— 109.00 Кб (Скачать файл)

Сущность катализа сводится к следующему: 1) активная молекула реагента достигается за счет их неполновалентного взаимодействия с веществом катализатора и состоит в расслаблении химических связей реагента; 2) в общем случае любую каталитическую реакцию можно представить проходящей через промежуточный комплекс, в котором происходит перераспределение расслабленных (неполновалентных) химических связей.

Все рассмотренные выше эффекты объясняются ослаблением исходных связей. Кроме этого, возможны и другие эффекты, являющиеся следствием неполновалентного взаимодействия молекул реагента с катализатором.

Эволюционная химия. Эволюционная химия зародилась в 1950 – 1960 гг. Под эволюционными проблемами следует понимать проблемы самопроизвольного синтеза новых химических соединений (без участия человека). Эти соединения являются более сложными и более высокоорганизованными продуктами по сравнению с исходными веществами.

В основе эволюционной химии лежат процессы биокатализа, ферментологии; ориентирована она главным образом на исследование молекулярного уровня живого.

 

                 3. Основные принципы и законы химии

 

Рассматривая химию с точки зрения ее становления, можно сказать, что в ее основе лежат два закона: сохранения массы и постоянства состава.

Закон сохранения массы может быть сформулирован еще так: полная масса замкнутой системы остается постоянной. Иными словами, этот закон утверждает, что химические превращения не сопровождаются измеримым увеличением или уменьшением массы участвующих в них веществ. Например, при разложении воды ее исходная масса будет равна сумме массы водорода и массы кислорода. Этот закон был установлен М.В. Ломоносовым и А. Лавуазье. Он может быть сформулирован и так: вещество нельзя ни создать из ничего, ни уничтожить.

Закон постоянства состава гласит: всякое химическое соединение, независимо от способа его получения, всегда содержит определенные элементы в одинаковом весовом отношении. Он был установлен французским химиком Ж. Прустом в 1800 – 1808 гг. и теоретически обобщен в 1800 – 1810 гг.

Однако рассмотренные законы не являются универсальными законами химии. Последними следует считать периодический закон химических элементов и принцип Ле Шателье-Брауна.

Согласно периодическому закону (в его современной форме), свойства химических элементов не являются случайными, а зависят от электронного строения данного атома, они закономерно изменяются с изменением атомного номера. Важным в периодическом законе является то, что эта зависимость характеризуется строгой периодичностью, которая находит свое выражение в повторяемости типичных свойств элементов.

Д.И. Менделееву в момент создания периодической системы было известно 62 химических элемента, а в настоящее время мы знаем уже 112. В 30-х гг. последним элементом этой системы был уран (U – девяносто второй элемент). Начиная с 40-х гг. новые элементы открывали регулярно по нескольку элементов в десятилетие. В 1940 – 1945 гг. путем физического синтеза атомных ядер были открыты элементы с номера 93 по 96: нептуний, плутоний, америций, кюрий. В 1949 – 1952 гг. стали известны берклий, калифорний, эйнштейний, фермий, менделевий (с номера от 97 по 101). В последующие 40 лет были синтезированы элементы от 102-го по 109-й: нобелий, лоуренсий, курчатовий, жолиотий, резерфордий, борий, ганий, мейтнерий. Как правило, они носят имена выдающихся ученых-физиков или химиков. Например, элементы № 108 и № 109 названы в честь Отто Гана и Лизы Мейтнер, открывших в 1935 г. реакцию самопроизвольного деления урана. Следует отметить, что элементы со 102-го по 109-й крайне неустойчивы: период их полураспада составляет сотые и тысячные доли секунды. Считается, что элементы после № 110 являются настолько короткоживущими, что будут распадаться в момент их образования. Однако вполне возможно, что при номерах 126, 164, 184 существуют островки стабильности, означающие длительное существование элементов с этими номерами.

Принцип Ле Шателье-Брауна имеет следующую формулировку: если на систему, находящуюся в термодинамическом равновесии, воздействовать извне, изменяя какой-либо из параметров, определяющих положение равновесия, то в системе усилия то из направлений процесса, которое ослабляет влияние произведенного воздействия. Положение равновесия также сместится в направлении ослабления эффекта внешнего воздействия.

Данный принцип признан в настоящее время и далеко за пределами химии; он находит применение в различных науках, вплоть до общественных.

Важнейшие химические принципы могут быть выявлены с связи с двумя важнейшими химическими понятиями. Первым из них является понятие «моль». Выделение и осмысление этого понятия служит, с нашей точки зрения, важнейшим достижением химии. Под молем химического элемента понимается его весовое количество в граммах, численно равное атомному весу этого элемента. Число атомов любого элемента в одном моле равно 6,022 1023. Это число – постоянная Авогадро. Она характеризует химический мир и дистанцию, отделяющую его от отдельных атомов. Моль входит в число семи основных единиц системы СИ как мера количества структурных элементов. Закон Авогадро является одним из фундаментальных законов химии.

Второе важнейшее понятие – «красота (гармония) химии». Химия – очень красивая наука, причем красота здесь наглядна. В своей «Истории органической химии» известный химик П. Вальден ценный раздел посвятил тому, что он назвал художественным началом в синтетической химии. Это художественное начало проявляется в архитектонике молекул, в первую очередь в различных формах симметрии синтезируемых структур.

 

                   4. Химическая связь и химическая кинетика

 

Одним из центральных понятий химии служит понятие «химическая связь». Очень немногие элементы встречаются в природе в виде отдельных, свободных атомов одного сорта. Атомы большинства элементов становятся более устойчивыми при образовании химических связей с другими атомами. Соединения образуются при условии, что возникает энергетическое состояние с более низкой полной энергией; чем у непрореагировавших исходных атомов.

Химическая связь осуществляется обобществлением электронов. В зависимости от конкретного механизма этого обобществления возникает связи различных типов. Представляется целесообразным привести энергии для связей между различными элементами и для различной кратности. Это дает представление о механизмах, обеспечивающих устойчивость окружающего нас мира (см. табл. 1,2).

 

Таблица 1

Энергия связи для некоторых одинарных связей [кДж/моль]

Вид связи

Значение энергии

Вид связи

Значение энергии

Н – Н

436

P – P

217

С – С

344

N – Cl

200

N – O

175

Na – Na

75

S – Cl

277

S – S

266

Li – Li

111

P – Cl

317

O – O

143

K – K

55

Cl – Cl

243

O – Cl

210


 

Таблица 2

Энергия связи для некоторых кратных связей [кДж/моль]

Вид связи

Значение энергии

Вид связи

Значение энергии

С=С

615

P=P

490

С=О

725

O=O

402

С=N

890

C=C

812

N=N

418

C=N

615

C=S

477

N=N

946


 

Из этих таблиц наглядно видно, насколько энергия двойных и тройных связей больше энергии одинарных связей, и, кроме того, становится понятным, почему углерод и азот так распространены в окружающем нас мире: их двойные и тройные связи – самые прочные.

Энергия, необходимая для разрыва определенной связи, т.е. для расщепления молекулы на две части, ранее соединявшиеся этой связью, называется энергией диссоциации связи в молекуле. В двухатомных молекулах энергия связи и энергия диссоциации связи совпадают. В многоатомных молекулах они могут быть различными.

Химическая кинетика – такой же узловой раздел химии, как и химическая связь. С этим разделом взаимодействуют все направления, подходы и методы химии. Самопроизвольные химические реакции идут в сторону образования более устойчивых соединений и сопровождаются выделением энергии. Для различных типов реакций имеются формулы, описывающие протекание процесса во времени. Имеются уравнения (С. Аррениуса), выражающие зависимость скорости реакции от температуры. Для осуществления реакции каждая пара молекул должна пройти через конфигурацию (активированный комплекс), промежуточную между исходной и конечной. Катализатор уменьшает величину энергии активации и, следовательно, увеличивает скорость как прямой, так и обратной реакции.

Реакции могут быть охарактеризованы порядком реакции, формально представляющим собой показатель степени концентрации этого вещества в кинетическом уравнении. Порядок реакции зависит от ее механизма и может изменяться с изменением температуры и давления. Важнейшим состоянием исследуемых реакций является состояние динамического равновесия, при котором скорости прямой и обратной реакции уравновешиваются. Это состояние характеризуется константой равновесия, которая в свою очередь является комбинацией констант для отдельных этапов полной реакции.

Химическая эволюция вещества начинается в момент начала расширения Вселенной. Этому моменту соответствует стадия элементарных частиц, когда кинетическая энергия сталкивающихся ядер уже не способна преодолеть барьер отталкивания между ними. В результате при температуре приблизительно 10 тыс. градусов образуется многоярусная система, окруженная электронной оболочкой, и первые соединения (CO, CH, HO, SiO). Затем при температурах ниже 3 – 4 тыс. градусов начинается образование твердых тел, а при возникновении некоторых оптимальных условий, соответствующих условиям появления геосфер Земли, начинается биогенная стадия эволюции вещества.

 


                                        Заключение

 

Информация о работе Химия как раздел современного естествознания