Физическая природа звезд

Автор работы: Пользователь скрыл имя, 09 Июня 2013 в 07:46, реферат

Описание работы

Открытие звёзд, видимый блеск которых со временем меняется, привело к специальным обозначениям. Они обозначаются прописными латинскими буквами, за которыми следует название созвездия в родительном падеже. Но первая переменная звезда, обнаруженная в каком-то созвездии, обозначается не буквой A. Отсчёт ведётся от буквы R. Следующая звезда обозначается буквой S и так далее. Когда все буквы алфавита исчерпаны, начинается новый круг, то есть после Z снова используется A. При этом буквы могут удваиваться, например «RR». «R Льва» означает, что это первая открытая переменная звезда в созвездии Льва.

Содержание работы

Введение…………………………………………………………………………3
Глава 1. Что такое звезда………………………………………………………4
Сущность звезд……………………………………………………………...4
Рождение звезд………………………………………………………………7
1.2 Эволюция звезд……………… ……………………………………………10
1.3 Конец звезды……………………………………………………………….14
Глава 2. Физическая природа звезд…………………………………………..24
2.1 Светимость ……………………………………………………………….24
2.2 Температура……………………………………………………………..…26
2.3 Спектры и химический состав звезд…………………………….…… ……27
2.4 Средние плотности звезд………………………………………………….28
2.5 Радиус звезд………………………………………………………………….39
2.6 Масса звезд…………………………………………………………………30
Заключение……………………………………………………………………..32
Список литературы……………………………………………………………33

Файлы: 1 файл

реферат ПО КСЕ.docx

— 1.61 Мб (Скачать файл)

Если для "развенчания" "небулия" и "корония" потребовались десятилетия, то уже через несколько недель после открытия стало ясно, что линии "мистериума" принадлежат обыкновенному гидроксилу, но только находящемуся в необыкновенных условиях.

Итак, источники "мистериума" — это гигантские, природные космические мазеры, работающие на волне линии гидроксила, длина которой 18 см. Именно в мазерах (а на оптических и инфракрасных частотах — в лазерах) достигается огромная яркость в линии, причем спектральная ширина ее мала. Как известно, усиление излучения в линиях благодаря такому эффекту возможно тогда, когда среда, в которой распространяется излучение, каким-либо способом "активирована". Это означает, что некоторый "сторонний" источник энергии (так называемая "накачка") делает концентрацию атомов или молекул на исходном (верхнем) уровне аномально высокой. Без постоянно действующей "накачки" мазер или лазер невозможны. Вопрос о природе механизма "накачки" космических мазеров, пока еде окончательно не решен. Однако скорее всего "накачкой" служит достаточно мощное инфракрасное излучение. Другим возможным механизмом «накачки» могут быть некоторые химические реакции.

Механизм "накачки" этих мазеров пока еще не совсем ясен, все же можно составить себе грубое представление о физических условиях в облаках, излучающих мазерным механизмом линию 18 см. Прежде всего, оказывается, что эти облака довольно плотны: в кубическом сантиметре там имеется по крайней мере 108—109 частиц, причем существенная (а может быть и большая) часть их — молекулы. Температура вряд ли превышает две тысячи градусов, скорее всего она порядка 1000 градусов. Эти свойства резко отличны от свойств даже самых плотных облаков межзвездного газа. Учитывая еще сравнительно небольшие размеры облаков, мы невольно приходим к выводу, что они скорее напоминают протяженные, довольно холодные атмосферы звезд — сверхгигантов. Очень похоже, что эти облака есть не что иное, как ранняя стадия развития протозвезд, следующая сразу за их конденсацией из межзвездной среды. В пользу этого утверждения (которое автор этой книги высказал еще в 1966 г.) говорят и другие факты. В туманностях, где наблюдаются космические мазеры, видны молодые горячие звезды. Следовательно, там недавно закончился и, скорее всего, продолжается и в настоящее время, процесс звездообразования. Пожалуй, самое любопытное это то, что, как показывают радиоастрономические наблюдения, космические мазеры этого типа как бы "погружены" в небольшие, очень плотные облака ионизованного водорода. В этих облаках имеется много космической пыли, что делает их ненаблюдаемыми в оптическом диапазоне. Такие "коконы" ионизуются молодой, горячей звездой, находящейся внутри них. При исследовании процессов звездообразования весьма полезной оказалась инфракрасная астрономия. Ведь для инфракрасных лучей межзвездное поглощение света не так существенно.

Мы можем  теперь представить следующую картину: из облака межзвездной среды, путем  его конденсации, образуются несколько  сгустков разной массы, эволюционирующих в протозвезды. Скорость эволюции различна: для более массивных сгустков она будет больше. Поэтому раньше всего превратится в горячую звезду наиболее массивный сгусток, между тем как остальные будут более или менее долго задерживаться на стадии протозвезды. Их-то мы и наблюдаем как источники мазерного излучения в непосредственной близости от "новорожденной" горячей звезды, ионизующей не сконденсировавший в сгустки водород "кокона". Разумеется, эта грубая схема будет в дальнейшем уточняться, причем, конечно, в нее будут внесены существенные изменения. Но факт остается фактом: неожиданно оказалось, что некоторое время (скорее всего — сравнительно короткое) новорожденные протозвезды, образно выражаясь, "кричат" о своем появлении на свет, пользуясь новейшими методами квантовой радиофизики (т. е. мазерами).

Оказавшись  на главной последовательности и  перестав сжигаться, звезда длительно излучает практически не меняя своего положения на диаграмме "спектр - светимость". Ее излучение поддерживается термоядерными реакциями, идущими в центральных областях. Таким образом, главная последовательность представляет собой как бы геометрическое место точек на диаграмме "спектр - светимость", где звезда (в зависимости от ее массы) может длительно и устойчиво излучать благодаря термоядерным реакциям. Место звезды на главной последовательности определяется ее массой. Следует заметить, что имеется еще один параметр, определяющий положение равновесной излучающей звезды на диаграмме "спектр- светимость". Таким параметром является первоначальный химический состав звезды. Если относительное содержание тяжелых элементов уменьшится, звезда "ляжет" на диаграмме ниже. Именно этим обстоятельством объясняется наличие последовательности субкарликов. Как уже говорилось выше, относительное содержание тяжелых элементов у этих звезд в десятки раз меньше, чем у звезд главной последовательности.

Время пребывания звезды на главной последовательности определяется ее первоначальной массой. Если масса велика, излучение звезды имеет огромную мощность и она довольно быстро расходует запасы своего водородного "горючего". Так, например, звезды главной последовательности с массой, превышающей солнечную в несколько десятков раз (это горячие голубые гиганты спектрального класса О), могут устойчиво излучать, находясь на этой последовательности всего лишь несколько миллионов лет, в то время как звезды с массой, близкой к солнечной, находятся на главной последовательности 10—15 млрд. лет.

"Выгорание"  водорода (т. е. превращение его  в гелий при термоядерных реакциях) происходит только в центральных областях звезды. Это объясняется тем, что звездное вещество перемешивается лишь в центральных областях звезды, где идут ядерные реакции, в то время как наружные слон сохраняют относительное содержание водорода неизменным. Так как количество водорода в центральных областях звезды ограниченно, рано или поздно (в зависимости от массы звезды) он там практически весь "выгорит". Расчеты показывают, что масса и радиус центральной ее области, в которой идут ядерные реакции, постепенно уменьшаются, при этом звезда медленно перемещается на диаграмме "спектр - светимость" вправо. Этот процесс происходит значительно быстрее у сравнительно массивных звезд.

Что же произойдет со звездой, когда весь (или почти  весь) водород в ее ядре "выгорит"? Так как выделение энергии в центральных областях звезды прекращается, температура и давление не могут поддерживаться там на уровне, необходимом для противодействия силе тяготения, сжимающей звезду. Ядро звезды начнет сжиматься, а температура его будет повышаться. Образуется очень плотная горячая область, состоящая из гелия (в который превратился водород) с небольшой примесью более тяжелых элементов. Газ в таком состоянии носит название "вырожденного". Он обладает рядом интересных свойств. В этой плотной горячей области ядерные реакции происходить не будут, но они будут довольно интенсивно протекать на периферии ядра, в сравнительно тонком слое. Звезда как бы "разбухает", и начнет "сходить" с главной последовательности, переходя в области красных гигантов. Далее, оказывается, что звезды гиганты с меньшим содержанием тяжелых элементов будут иметь при одинаковых размерах более высокую светимость.

 

 

 

 

 

 

 

 

Эволюция звезды класса G на примере Солнца:

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4 КОНЕЦ ЗВЕЗДЫ

Что произойдет со звездами, когда реакция "гелий — углерод" в центральных областях исчерпает себя, так же как и водородная реакция в тонком слое, окружающем горячее плотное ядро? Какая стадия эволюции наступит вслед за стадией красного гиганта?

Белые карлики

Совокупность данных наблюдений, а также ряд теоретических соображений говорят о том, что на этом этапе эволюции звезды, масса которых меньше, чем 1,2 массы Солнца, существенную часть своей массы, образующую их наружную оболочку, "сбрасывают". Такой процесс мы наблюдаем, по-видимому, как образование так называемых "планетарных туманностей". После того как от звезды отделится со сравнительно небольшой скоростью наружная оболочка, "обнажатся" ее внутренние, очень горячие слои. При этом отделившаяся оболочка будет расширяться, все дальше и дальше отходя от звезды.

Мощное ультрафиолетовое излучение звезды — ядра планетарной туманности — будет ионизовать атомы в оболочке, возбуждая их свечение. Через несколько десятков тысяч лет оболочка рассеется и останется только небольшая очень горячая плотная звезда. Постепенно, довольно медленно остывая, она превратится в белый карлик.

Таким образом белые карлики как бы "вызревают" внутри звезд — красных гигантов — и "появляются на свет" после отделения наружных слоев гигантских звезд. В других случаях сбрасывание наружных слоев может происходить не путем образования планетарных туманностей, а путем постепенного истечения атомов. Так или иначе белые карлики, в которых весь водород "выгорел" и ядерные реакции прекратились, по-видимому, представляют собой заключительный этап эволюции большинства звезд. Логическим выводом отсюда является признание генетической связи между самыми поздними этапами эволюции звезд и белыми карликами.

 

 

 

 

 

 

 

 

 

 

 

Белые карлики с углеродной атмосферой

 

 

 

 

 

 

 

 

 

 

 

На расстоянии 500 световых лет от Земли в созвездии Водолея  находится умирающая звезда типа Солнца. За последние несколько тысяч  лет эта звезда породила туманность Улитку - хорошо изученную близкую  планетарную туманность. Планетарная  туманность является обычной конечной стадией эволюции для звезд этого  типа. На этом изображении туманности Улитка, сделанном инфракрасной космической  обсерваторией показано излучение, приходящее преимущественно от расширяющихся  оболочек молекулярного водорода. Пыль, которая обычно присутствует в таких туманностях, должна интенсивно излучать также в инфракрасном диапазоне. Однако кажется, что она отсутствует в этой туманности. Причина может находиться в самой центральной звезде - белом карлике. Эта маленькая, но очень горячая звезда излучает энергию в коротковолновом ультрафиолетовом диапазоне и поэтому не видна на инфракрасном изображении. Астрономы полагают, что со временем это интенсивное ультрафиолетовое излучение могло разрушить пыль. Ожидается, что Солнце также будет проходить стадию планетарной туманности через 5 миллиардов лет.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

На первый взгляд, туманность Улитка (или NGC 7293) имеет простую круглую  форму. Од-нако теперь стало ясно, что эта хорошо исследованная планетарная туманность, порожденная похожей на Солнце звездой, приближающейся к концу своей жизни, обладает удивительно сложной структурой. Ее протяженные петли и похожие на кометы газопылевые сгустки были исследованы на изображениях, полученных космическим телескопом Хаббла. Однако это четкое изображение туманности Улитка было получено на телескопе с диаметром объектива всего в 16 дюймов (40.6 см), оснащенным камерой и набором широкополосных и узкополосных фильтров. На цветном составном изображении можно увидеть вызывающие интерес детали структуры, включая сине-зеленые радиальные полоски, или спицы, длиной ~1 световой год, которые делают туманность похожей на космическое колесо велосипеда. Присутствие спиц, по-видимому, свидетельствует, что сама туманность Улитка – старая, проэволюционировавшая планетарная туманность. Туманность находится на расстоянии всего в 700 световых лет от Земли в созвездии Водолея.

Черные  карлики

Постепенно  остывая, они все меньше и меньше излучают, переходя в невидимые "черные" карлики. Это мертвые, холодные звезды очень большой плотности, в миллионы раз плотнее воды. Их размеры меньше размеров земного шара, хотя массы  сравнимы с солнечной. Процесс остывания белых карликов длится много сотен миллионов лет. Так кончает свое существование большинство звезд. Однако финал жизни сравнительно массивных звезд может быть значительно, более драматическим.

Нейтронные  звезды

Если масса  сжимающейся звезды превосходит  массу Солнца более чем в 1,4 раза, то такая звезда, достигнув стадии белого карлика, на том не остановится. Гравитационные силы в этом случае очень велики, что электроны вдавливаются внутрь атомных ядер. В результате изотопы превращаются в нейтроны способные прилетать друг к другу  без всяких промежутков. Плотность  нейтронных звезд превосходит даже плотность белых карликов; но если масса материала не превосходит 3 солнечных масс, нейтроны, как и  электроны, способны сами предотвратить  дальнейшее сжатие. Типичная нейтронная звезда имеет в поперечнике всего  лишь от 10 до 15 км, а один кубический сантиметр ее вещества весит около  миллиарда тонн.  Помимо неслыханно громадной плотности, нейтронные звезды обладают еще двумя особыми свойствами, которые позволяют их обнаружить, невзирая на столь малые размеры: это быстрое вращение и сильное  магнитное поле. В общем, вращаются  все звезды, но когда звезда сжимается, скорость ее вращения возрастает - точно  так же, как фигурист на льду вращается  гораздо быстрее, когда прижимает  к себе руки. Нейтронная звезда совершает  несколько оборотов в секунду. Наряду с этим исключительно быстрым  вращением, нейтронные звезды имеют  магнитное поле, в миллионы раз  более сильное, чем у Земли.

 

 

 

 

 

 

 

 

 

 

 

 

Хаббл увидел одиночную нейтронную звезду в космосе.

 

 


Пульсары

Первые пульсары были открыты в 1968 г., когда радиоастрономы обнаружили регулярные сигналы, идущие к нам из четырех точек Галактики. Ученые были поражены тем фактом, что  какие-то природные объекты могут  излучать радиоимпульсы в таком  правильном и быстром ритме. Вначале правда, ненадолго астрономы заподозрили участие неких мыслящих существ, обитающих в глубинах Галактики. Но вскоре было найдено естественное объяснение. В мощном магнитном поле нейтронной звезды движущиеся по спирали электроны генерируют радиоволны, которые излучаются узким пучком, как луч прожектора. Звезда быстро вращается, и радиолуч пересекает линию нашего наблюдения, словно маяк. Некоторые пульсары излучают не только радиоволны, но и световые, рентгеновские и гамма-лучи. Период самых медленных пульсаров около четырех секунд, а самых быстрых - тысячные доли секунды. Вращение этих нейтронных звезд было по каким-то причинам еще более ускорено; возможно, они входят в двойные системы. 

Информация о работе Физическая природа звезд