Геологические процессы и документы

Автор работы: Пользователь скрыл имя, 22 Ноября 2013 в 14:14, реферат

Описание работы

Что понимается под геологическим процессом? Это физико-химические процессы, происходящие внутри Земли или на ее поверхности и ведущие к изменению ее состава и строения.
Традиционно все геологические процессы принято делить на эндогенные и экзогенные. Деление это производится по месту проявления и по источнику энергии этих процессов.

Файлы: 16 файлов

Аттестация ПАТ Ц-8.doc

— 47.00 Кб (Просмотреть файл, Скачать файл)

Вопросники для оператора пульта управления 2011.doc

— 138.00 Кб (Просмотреть файл, Скачать файл)

Вопросы для аттестации операторов пульта управления в цехах добычи нафти и газа от ЦДНГ-3.doc

— 41.00 Кб (Просмотреть файл, Скачать файл)

вопросы для ПАТ от ЦДНГ-9.doc

— 42.00 Кб (Просмотреть файл, Скачать файл)

Вопросы для ПАТ.doc

— 61.00 Кб (Просмотреть файл, Скачать файл)

Вопросы ПАТ Ц-2.doc

— 43.50 Кб (Просмотреть файл, Скачать файл)

План стажировки в ЦДНГ-7 Ефимовой Н.П..doc

— 44.00 Кб (Просмотреть файл, Скачать файл)

Темы для формирования вопросов к аттестации от ЦДНГ-4.doc

— 38.50 Кб (Просмотреть файл, Скачать файл)

Геология.doc

— 605.50 Кб (Скачать файл)

Период юности в настоящее время переживают многие реки, текущие в горных районах. Они, как правило, характеризуются  бурным течением, наличием порогов и водопадов. Долины их имеют форму ущелий и каньонов.

По мере выработки  профиля равновесия река переходит  в период молодости. Этот период наступает когда в силу вступает боковая эрозия. В период молодости река стремится углубить свое русло только в верхнем течении, где еще наблюдаются процессы глубинной эрозии. В среднем и нижнем течении рек глубинная эрозия сменяется боковой. Это приводит к незначительному расширению ее долины, которая приобретает U-образную коробчатую форму. В эту стадию формируются прирусловые отмели. Продольный профиль реки еще не выработан.

На стадии зрелости скорость течения равномерно уменьшается  от верховьев к устью. Для этой стадии характерно появление излучин  — меандр, приводящих к увеличению коэффициента извилистости реки, образованию многочисленных рукавов, по которым вода течет параллельно основному руслу, и возникновению обширных аллювиальных равнин поймы.

Для определения стадии старости реки ясно выраженных критериев  не существует. Считается, что река вступает в стадию старости, тогда, когда дно ее долины достигает ширины, во много раз превышающей ширину поймы меандрирующей реки. На этой стадии происходят перенос и образуются многочисленные меандры. Река на стадии старости характеризуется максимальным коэффициентом извилистости и перемывает свои пойменные отложения.

Двигаясь прямолинейно, струя водного потока (и переносимые  ею частицы) при повороте русла ударяется  о берег. В результате вогнутый берег  интенсивно подмывается, становится обрывистым, а дно реки у вогнутого берега заметно углубляется (сечение АА). Как указывалось выше, скорость течения возрастает в самых глубоких участках русла, так как здесь меньше сказывается трение воды о дно. Следовательно, у вогнутого берега скорость будет больше. У противоположного берега скорость заметно падает, так как глубина здесь меньше и, кроме того, возникают поперечные придонные течения. Эти течения захватывают с собой частицы обломочного материала и откладывают их у выпуклого берега. Именно здесь, как правило, и накапливаются аллювиальные отложения. Струи воды, ударяясь о вогнутый берег, отражаются и направляются вниз по течению к противоположному берегу (сечение ВВ), в свою очередь подмывая его. На этом участке берег начинает отступать, увеличивается кривизна изгиба русла реки и значительно расширяется долина. Последнее происходит не только за счет отступания береговой линии ниже изгиба, но и за счет перемещения самих изгибов реки вниз по течению. В результате большинство выступов, сложенных коренными породами, срезается и долина приобретает плоскодонную форму (сечение СС).

Меандры с коротким радиусом расширяются значительно  быстрее, чем более крупные. Это  происходит потому, что все изгибы реки стремятся приобрести радиус кривизны приблизительно одного и того же порядка. Ввиду постоянного увеличения кривизны реки в ходе подмыва вогнутых берегов и отложения материала у выпуклых, вершины двух соседних меандр, обращенных в одну сторону, сходятся все ближе, и между ними остается только узкий перешеек. В период половодья может произойти прорыв такого перешейка, основная масса воды устремится в новое, спрямленное русло реки, а петля окажется отрезанной. На отрезанной стороне остается покинутое русло, получившее название старицы. Старицы, как правило, имеют в плане подковообразную форму; в дальнейшем они часто превращаются в болото.

В период старости реки в ее долине образуется широкая  пойма, или пойменная терраса, —  часть долины, заливаемая в половодье  и возвышающаяся над руслом реки в меженный период.

Периоды юности, молодости и зрелости составляют цикл эрозии реки. Большинство рек проходит все эти стадии развития. В ряде случаев все стадии можно наблюдать у одной реки. Например, Терек в верхнем течении переживает период юности, в нижнем — это уже зрелая река.

Цикл эрозии реки может быть неполным: в зависимости от рельефа начальной поверхности и слагающих ее пород река может сразу вступить в период зрелости, минуя юность, и т. д. Особенно это характерно для равнинных рек. Более того, уже сложившийся цикл эрозии может быть нарушен, например, после вступления в период старости может вновь наступить период юности реки, т. е. может произойти ее омоложение. Этому способствует ряд факторов, главными из которых являются:

1) понижение  базиса эрозии, приводящее к увеличению  уклона русла реки и возрастанию скорости ее течения, а также к возобновлению донной эрозии;

2) повышение какого-либо  участка реки, обусловливающее изменение ее продольного профиля и увеличение уклона русла;

3) изменение  климата района, в котором протекает  река; особенно большое значение имеет увеличение количества выпадающих осадков, в результате чего возрастает масса воды в реке; к этому же приводит таяние ледников в верховьях реки, связанное с потеплением климата.

 

Речные  террасы

 

Терраса - это площадка в строении речной долины открытая или погребенная и обязанная своим происхождением эрозионной или аккумулятивной деятельности водотока в предыдущий цикл развития.

Каждое омоложение реки вызывает новый цикл эрозии —  появление донной эрозии, углубление дна, спрямление русла. При таком углублении русла аллювиальные отложения, слагающие пойму реки, оказываются выше новых пойменных осадков при новом базисе эрозии. Неразмытые остатки древних пойм обычно образуют ступенчатые уступы, нависающие над новой поймой, и называются надпойменными террасами. Число террас соответствует количеству этапов омоложения (циклов эрозии), которые пережила река за время своего существования.

Углубление реки при  ее омоложении приводит к тому, что  древние террасы располагаются  выше молодых, подвергаются воздействиям выветривания и площадного смыва. Поэтому молодые террасы обычно лучше выделяются в рельефе.

Надпойменные  террасы нумеруются снизу вверх  — от более молодых к древним: над уровнем поймы обычно выделяют первую, вторую, третью и т. д.

В строении надпойменных террас выделяют ряд геоморфологических элементов — уступ, бровку, террасовидную площадку и тыловой шов. Террасы отличаются друг от друга, в частности, по соотношению аллювиальных и коренных отложений. Так, различают террасы следующих видов: аккумулятивные (террасы накопления), эрозионные (террасы размыва), цокольные (смешанные).

К аккумулятивным террасам относят такие, у которых мощность аллювия больше относительной высоты их над уровнем реки; весь террасовидный уступ таких террас сложен аллювиальными накоплениями.

Эрозионные террасы почти целиком сложены коренными породами; на террасовидной площадке таких террас аллювий отсутствует или располагается в виде очень тонкого покрова. Эти террасы образуются при резком преобладании процессов эрозии над процессами аккумуляции в истории развития реки. Цокольными террасами считаются такие, у которых мощность аллювия значительна, но не превышает их высоты; в уступах этих террас ниже толщи аллювия обнажаются коренные породы, слагающие основание (цоколь) террасы и вышележащую часть склона долины.

 

1.1.4. Геологическая деятельность  подземных вод

 

Отрасль геологии, предметом которой является изучение подземных вод и условий их образования, называется гидрогеологией.

Формы существования воды в горных породах

Интенсивная деятельность подземных вод определяется прежде всего их огромной массой. По оценке В. И. Вернадского, масса подземных  вод достигает 5×1017т, что немногим меньше общей массы Мирового океана (1,5×1018 т). Практически в пустотах и трещинах земной коры содержится огромный подземный океан, превышающий по массе воды, например, Атлантический океан.

Вода, заполняющая различные  пустоты горных пород (каверны, трещины, поры), в зависимости от давления и температуры может находиться в парообразной, жидкой или твердой (в виде льда) фазах.

К парообразной фазе относят водяные пары, которые вместе с воздухом заполняют поры, каверны и трещины горных пород. При понижении температуры или повышении давления водяные пары конденсируются на стенках пустот горных пород и переходят в жидкую фазу.

Подземную воду, находящуюся  в горных породах в жидкой фазе, подразделяют на гигроскопическую, пленочную, капиллярную и гравитационную.

Гигроскопическая вода в виде сплошной одномолекулярной пленки или отдельных мельчайших капелек покрывает стенки пустот. Она настолько прочно связана с частицами породы, что не способна передвигаться в пустотах породы под влиянием силы тяжести. Выделить гигроскопическую воду из породы можно только путем нагревания последней до температуры более 100°С, при которой вода переходит в парообразную фазу.

С увеличением количества воды в пустотах породы возникает пленочная вода, образующая на поверхности минеральных частиц сплошную пленку из нескольких слоев молекул. Толщина такой пленки может быть различной. Пленочная вода способна передвигаться от частиц с большей толщиной пленки к частицам с меньшей ее толщиной. Движение воды на стенках пустот происходит до тех пор, пока толщина пленок не станет равной, причем пленочная вода движется в различных направлениях, не испытывая влияния силы тяжести.

При еще большем содержании воды в породах образуется капиллярная вода, заполняющая мелкие пустоты и микротрещины, в которых она удерживается силами поверхностного натяжения. Капиллярная вода может продвигаться по капиллярным каналам в любом направлении, в том числе и снизу вверх, т. е. в направлении, противоположном действию силы тяжести. Продвигается она обычно тем дальше, чем тоньше диаметр пор или трещин, по которым она движется.

Гравитационная  вода находится в капельно-жидком состоянии в проницаемых породах, передает гидростатическое давление и передвигается под действием гравитационных сил. Сила тяжести обусловливает наличие у гравитационной воды уровня, или зеркала.

Для геологов-нефтяников наибольший интерес представляет гравитационная вода, содержащаяся в породах и способная перемещаться по пустотам пластов.

Кроме перечисленных  в природе существуют также воды, химически связанные с горными  породами, участвующие в строении кристаллической решетки минералов. К ним относятся конституционная, кристаллизационная и гидратная воды.

Коллекторские свойства горных пород

Содержание и накопление воды в породе зависит от ее коллекторских  свойств, т. е. от способности вмещать  и пропускать через себя воду и  любую другую жидкость или газ.  

Емкостная способность пород, т. е. способность вмещать жидкость или газ, определяется их пористостью. Пористостью т называется отношение суммарного объема пор Vп к общему объему породы Vобщ, выраженное в процентах: т = (Vп/Vобщ)´100. Пористость обломочных пород зависит от их гранулометрического состава, под которым понимают размеры и форму слагающих породу частиц. Пористость осадочных пород, особенно песков и алевритов, тем выше, чем более однородны по размеру и лучше окатаны отдельные песчинки. И наоборот, чем разнообразнее по размеру частицы, слагающие породу, и чем меньше они окатаны, тем меньше пористость породы.

Происхождение порового пространства в породе определяется особенностями ее формирования и  последующего развития. В зависимости  от этих процессов различают поры первичные и вторичные.

Первичные поры формируются в процессе образования породы. К ним относятся поры: межзерновые — между обломками в осадочной породе; межкристаллические — по плоскостям спайности;  биогенного  происхождения — образовавшиеся после распада органического вещества; межслоевые — между плоскостями напластования осадочных пород.

Вторичные поры образуются в результате воздействия на породу различных факторов. Среди вторичных пор различают: трещинные, возникшие в результате дробления плотных пород при тектонических движениях; эрозионные, образовавшиеся под действием экзогенных процессов выветривания; выщелачивания, возникающие при растворении и уносе растворимых минералов потоками подземных вод.

Различные породы обладают пористостью 20—30 % и более. Пористость хорошо отсортированных песков может составлять 15—20 %, а некоторых разновидностей сухой глины даже 50— 60 %. Однако опыт показывает, что далеко не все породы, обладающие пористостью, могут пропускать через себя жидкость или газ. И действительно, величина пористости никак не отражает характер соединения пор между собой, а следовательно, и фильтрационную способность породы. Это свойство горных пород характеризуется проницаемостью.

За единицу  проницаемости в Международной системе единиц принимается проницаемость пористой породы, при фильтрации через образец которой площадью 1 м2 и длиной 1 м при перепаде давления 1 Па расход жидкости вязкостью 1 Па ´ с составляет 1 м3/с. Физический смысл размерности заключается в том, что проницаемость характеризует площадь сечения каналов пустотного пространства, по которым происходит фильтрация.

Между пористостью и  проницаемостью существует довольно сложная  зависимость, однако проницаемость  породы определяется не только объемом  пустотного пространства, но и формой, размерами пор и трещин, характером их соединения между собой. Этим можно объяснить тот факт, что не всегда значительная пористость обеспечивает высокую проницаемость породы. Например, глины нередко имеют пористость не меньшую, а даже большую (до 50—60 %), чем крупнозернистые пески (до 30 %), а оказываются практически непроницаемыми. Обусловлено это тем, что размеры пор у глины настолько малы, что большая часть влаги находится в них в капиллярном состоянии, т. е. не способна свободно перемещаться по пласту.

Все горные породы в той или иной степени способны пропускать воду, однако степень проницаемости их различна. По степени проницаемости горные породы подразделяются на три группы. К первой относятся проницаемые породы, через которые вода фильтруется наиболее легко. Это — пески, гравий, галечники, трещиноватые разности других пород. Вторая группа объединяет полупроницаемые породы — супеси, лёсс, неразложившийся торф и др. К третьей группе относятся практически непроницаемые породы — глины, плотные глинистые сланцы, аргиллиты, сцементированные осадочные породы, нетрещиноватые разности магматических и метаморфических пород, а также породы, находящиеся в зоне многолетней мерзлоты. Породы первой и второй групп слагают пласты-коллекторы, породы третьей группы образуют пласты-водоупоры.

Исследование скважин.doc

— 471.50 Кб (Просмотреть файл, Скачать файл)

Источники пластовой энергии.doc

— 212.50 Кб (Просмотреть файл, Скачать файл)

Насосная эксплуатация скважин.doc

— 2.95 Мб (Просмотреть файл, Скачать файл)

Подготовка скважин к эксплуатации.doc

— 608.50 Кб (Просмотреть файл, Скачать файл)

Ремонт скважин.doc

— 216.00 Кб (Просмотреть файл, Скачать файл)

Техника и технология воздействия на залежь нефти.doc

— 637.50 Кб (Просмотреть файл, Скачать файл)

ценная информация о ...doc

— 315.00 Кб (Просмотреть файл, Скачать файл)

Информация о работе Геологические процессы и документы