Бурение нефтяных и газовых скважин

Автор работы: Пользователь скрыл имя, 14 Мая 2014 в 19:03, лекция

Описание работы

На основании археологических находок и исследований установлено, что первобытный человек около 25 тыс. лет назад при изготовлении различных инструментов сверлил в них отверстия для прикрепления рукояток. Рабочим инструментом при этом служил кремневый бур.
В Древнем Египте вращательное бурение (сверление) применялось при строительстве пирамид около 6000 лет назад.
Первые сообщения о китайских скважинах для добычи воды описаны около 600 г. до н.э. Скважины сооружались методом ударного бурения и достигали глубины 900 м. В 221...263 гг. н.э. в Сычуане из скважин глубиной около 240 м добывали газ, который использовался для выпаривания соли. Все это свидетельствует о том, что буровые работы велись не только с целью добычи соли, но и с целью добычи нефти и газа.

Файлы: 1 файл

БУРЕНИЕ_НЕФТЯНЫХ_И_ГАЗОВЫХ_СКВАЖИН.doc

— 1.53 Мб (Скачать файл)

Основными достоинствами алмазных долот являются хорошая центрируемость их на забое и формирование круглого забоя (в отличие от треугольной с округленными вершинами формы забоя при бурении шарошечными долотами).

Существенным недостатком алмазных долот является: во-первых, крайне низкая механическая скорость бурения. Максимальная механическая скорость бурения, как правило, не превышает 3 м/ч. Для сравнения максимальная механическая скорость бурения шарошечными долотами составила около 120 м/ч. Во вторых, алмазные долота имеют узкую область применения (исключаются абразивные породы), и в третьих, предъявляются повышенные требования к предварительной подготовке ствола и забоя скважины. 

 

Рисунок 2.17 — Секторные долота 

 

2.5.1.4 Инструмент для отбора  керна 

 

Для отбора керна используется специальный породоразрушающий инструмент – бурильные головки) и керноприемные устройства.

Бурголовка (Рисунок 2.18), разрушая породу по периферии забоя, оставляет в центре скважины колонку породы (керн), поступающую при углублении скважины в керноприемное устройство, состоящее из корпуса и керноприемной трубы (керноприемника).

Корпус керноприемного устройства служит для соединения бурильной головки с бурильной колонной, размещения керноприемника и защиты его от механических повреждений, а также для пропуска бурового раствора к промывочным каналам бурголовки.

Керноприемник предназначен для приема керна, сохранения его во время бурения от механических повреждений и гидроэрозионного воздействия бурового раствора и сохранения при подъеме на поверхность. Для выполнения этих функций в нижней части керноприеника устанавливают кернорватели и кернодержатели, а вверху клапан, пропускающий через себя вытесняемый из керноприемника буровой раствор при заполнении его керном. По способу установки керноприемник предусматривает изготовление керноприемных устройств, как с несъемными, так и со съемными керноприемниками. 

 

Рисунок 2.18 — Схема устройства бурголовки с керноприемником 

 

При бурении с несъемными керноприемниками для подъема на поверхность заполненного керном керноприемника необходимо поднимать всю бурильную колонну.

При бурении со съемным керноприемником бурильная колонна не поднимается. Внутрь колонны на канате спускается специальный ловитель, с помощью которого из керноприемного устройства извлекают керноприемник и поднимают его на поверхность. При помощи этого же ловителя порожний керноприемник спускают и устанавливают в корпусе.

В настоящее время разработан целый ряд керноприемных устройств с несъемными керноприемниками «Недра», «Кембрий», «Силур» предназначенных для различных условий отбора керна и имеющих аналогичную конструкцию.

Для керноприемных устройств изготовляют шарошечные (Рисунок 2.19.), алмазные (Рисунок 2.20), лопастные бурголовки, предназначенные для бурения в породах различной твердости и абразивности. 

 

Рисунок 2.19 — Шарошечная бурголовка

Рисунок 2.20 — Алмазная бурголовка


 

 

2.5.2 Бурильная колонна 

 

Бурильная колонна (далее БК) соединяет долото (или забойный двигатель и долото) с наземным оборудованием (вертлюгом).

БК предназначена для следующих целей:

ü      передачи вращения от ротора к долоту;

ü      восприятия реактивного момента забойного двигателя;

ü      подвода бурового раствора к ПРИ и забою скважины;

ü      создания нагрузки на долото;

ü      подъема и спуска долота;

ü      проведения вспомогательных работ (проработка, расширение и промывка скважины, испытание пластов, ловильные работы и т.д.).

БК состоит (Рисунок 2.21) из свинченных друг с другом ведущей трубы 4, бурильных труб 8 и утяжеленных бурильных труб (УБТ) 12 и 13. Верхняя часть БК, представленная ведущей трубой 4, присоединяется к вертлюгу 1 с помощью верхнего переводника ведущей трубы 3 и переводника вертлюга 2. Ведущая труба присоединяется к первой бурильной трубе 8 с помощью нижнего переводника ведущей трубы 5, предохранительного переводника 6 и муфты бурильного замка 7. Бурильные трубы 8 свинчиваются друг с другом бурильными замками, состоящими из муфты 7 бурильного замка и его ниппеля 9 или соединительными муфтами 10. УБТ 12 и 13 свинчиваются друг с другом непосредственно. Верхняя УБТ присоединяется к бурильной трубе с помощью переводника 11, а нижняя привинчивается через переводник 14 к долоту (при роторном бурении) или к забойному двигателю с долотом.  

 

Рисунок 2.21 — Состав бурильной колоны 

 

Кроме названных выше элементов в компоновку БК могут включаться калибраторы, центраторы, стабилизаторы, расширители, промежуточные опоры для УБТ, обратные клапаны, фильтры, шламометаллоуловители, амортизаторы, протекторные кольца, средства наклонно-направленного бурения, керноприемные устройства и другое специальное оборудование. 

 

2.5.2.1 Ведущие бурильные трубы

 

 

Для передачи вращения БК от ротора или реактивного момента от забойного двигателя к ротору при одновременном осевом перемещении БК и передаче бурового раствора от вертлюга в БК служат ведущие бурильные трубы (ВБТ, Рисунок 2.22). 

 

Рисунок 2.22 — Ведущие бурильные трубы  

 

При бурении нефтяных и газовых скважин применяют ВБТ сборной конструкции, состоящие из квадратной толстостенной штанги (квадрат) 2 с просверленным каналом, верхнего штангового переводника (ПШВ) 1 с левосторонней резьбой и нижнего штангового переводника (ПШН) 3 с правосторонней резьбой. Квадратные штанги для ВБТ изготавливают длиной до 16.5 м. 

 

2.5.2.2 Стальные бурильные  трубы 

 

В настоящее время в нефтегазовой промышленности широко используются стальные бурильные трубы с приваренными замками (ТБП, Рисунок 2.23). 

 

Рисунок 2.23 — Схема стальной бурильной трубы с приваренными замками 

 

Бурильная труба состоит из трубной заготовки и присоединительных концов (замковой муфты и замкового ниппеля). Последние соединяются с трубной заготовкой либо посредством трубной резьбы и представляют собой бурильную трубу сборной конструкции, либо посредством сварки. Для свинчивания в свечи на присоединительных концах нарезается замковая резьба (на ниппеле наружная, на муфте внутренняя). Для увеличения прочности соединений концы трубных заготовок «высаживают», т.е. увеличивают толщину стенки.

Стальные бурильные трубы с приваренными замками предназначены преимущественно для роторного способа бурения, но также используются и при бурении с забойными гидравлическими двигателями.  

 

2.5.2.3 Легкосплавные бурильные трубы

 

 

Легкосплавные бурильные трубы сборной конструкции (ЛБТ, Рисунок 2.24) применяют при бурении с использованием забойных гидравлических двигателей. Низкая плотность материала – 2.78 г/см3. (стали — 7.85 г/см3) позволяет значительно облегчить бурильную колонну без потери необходимой прочности. Для изготовления трубных заготовок ЛБТ используется дюраль Д16 (сплав из системы «Алюминий-Медь-Магний»), для повышения износостойкости упрочняемая термообработкой. Предел текучести составляет 330 МПа. 

 

Рисунок 2.24 — Легкосплавные бурильные трубы сборной конструкции 

 

 

 

Кроме пониженной массы у ЛБТ есть еще ряд достоинств. Во-первых, наличие гладкой внутренней поверхности, что снижает гидравлические сопротивления примерно на 20 % по сравнению со стальными бурильными трубами одинакового сечения. Чистота внутренней поверхности ЛБТ достигается прессованием при изготовлении. Во-вторых, диамагнитность, что позволяет зенитный угол и азимут скважины замерять инклинометрами, спускаемыми в бурильную колонну.

Однако ЛБТ имеют и ряд недостатков: нельзя эксплуатировать БК при температурах выше 150 градусов Цельсия, так как прочностные свойства Д16Т начинают снижаться. Недопустимо их эксплуатировать также в агрессивной (кислотной или щелочной среде). 

 

 

2.5.2.4 Утяжеленные бурильные трубы

 

 

Для увеличения веса и жесткости БК в ее нижней части устанавливают УБТ, позволяющие при относительно небольшой длине создавать частью их веса необходимую нагрузку на долото.

В настоящее время наиболее широко используются следующие типы УБТ:

¨       горячекатанные (УБТ)

¨       сбалансированные (УБТС),

УБТ этих типов имеют аналогичную беззамковую (отсутствуют отдельные присоединительные концы) толстостенную конструкцию Горячекатанные УБТ выполняются гладкими по всей длине. На верхнем конце УБТС выполняется конусная проточка для лучшего захвата клиньями при спуско-подъемных работах.

Горячекатанные УБТ используются преимущественно при бурении с забойными гидравлическими двигателями.

Основные параметры УБТ, наиболее распространенные в Западной Сибири:

Ø      номинальные наружные диаметры труб 146, 178, 203 мм;

Ø      номинальный диаметр промывочного канала 74, 90, 100 мм;

Ø      длина труб, соответственно 8.0, 12.0, 12.0 м.

Сбалансированные УБТ (Рисунок 2.25) используют преимущественно при роторном способе бурения. 

 

Рисунок 2.25 — Сбалансированные УБТ 

Основные параметры УБТС, наиболее распространенные в Западной Сибири:

Ø      номинальные наружные диаметры труб 178, 203, 229 мм;

Ø      номинальный диаметр промывочного канала 80, 80, 90 мм;

Ø      длина труб 6.5 м.

 

 2.5.2.5 Переводники

 

 

Переводники предназначены для соединения элементов БК с резьбами различных типов и размеров. Переводники разделяются на три типа:

Ø      Переводники переходные (ПП, Рисунок 2.26 а), предназначенные для перехода от резьбы одного размера к резьбе другого. ПП имеющие замковую резьбу одного размера называются предохранительными.

Ø      Переводники муфтовые (ПМ, Рисунок 2.26 б) для соединения элементов БК, расположенных друг к другу ниппелями.

Ø      Переводники ниппельные (ПН, Рисунок 2.26 в) для соединения элементов БК, расположенных друг к другу муфтами.  

 

а

б

в

Рисунок 2.26 — Переводники: а — переходные; б — муфтовые; в — нипельные


 

 

Переводники каждого типа изготовляют с замковой резьбой как правого, так и левого направления нарезки. 

 

2.5.2.6 Специальные элементы  бурильной колонны 

 

Калибраторы служат для выравнивания стенок скважины и устанавливаются непосредственно над долотом. Используются как лопастные калибраторы с прямыми (К), спиральными (КС) и наклонными лопастями (СТ), так и шарошечные. Диаметры калибратора и долота должны быть равны.

Центраторы предназначены для обеспечения совмещения оси БК с осью скважины в местах их установки.

Стабилизаторы, имеющие длину в несколько раз большую по сравнению с длиной центраторов, созданы для стабилизации зенитного угла скважины.

Фильтр служит для очистки бурового раствора от примесей, попавших в циркуляционную систему. Устанавливается фильтр между ведущей и бурильными трубами. Основной элемент фильтра — перфорированный патрубок, в котором задерживаются примеси и при очередном подъеме БК удаляются. Применение фильтра особенно необходимо при бурении с забойными гидравлическими двигателями.

Обратный клапан устанавливают в верхней части бурильной колонны для предотвращения выброса пластового флюида через полость БК.

Кольца-протекторы устанавливают на БК для защиты от износа кондуктора, технической колоны, бурильных труб и их соединительных элементов в процессе бурения и спуско-подъемных операций. 

 

2.5.3 Забойные двигатели 

 

При бурении нефтяных и газовых скважин применяют гидравлические и электрические забойные двигатели, преобразующие соответственно гидравлическую энергию бурового раствора и электрическую энергию в механическую на выходном валу двигателя. Гидравлические забойные двигатели выпускают гидродинамического и гидростатического типов. Первые из них называют турбобурами, а вторые — винтовыми забойными двигателями. Электрические забойные двигатели получили наименование электробуров. 

 

2.5.3.1 Турбобуры 

 

Турбобур представляет собой многоступенчатую гидравлическую турбину, к валу которой непосредственно или через редуктор присоединяется долото.

Каждая ступень турбины состоит из диска статора и диска ротора (Рисунок 2.27) 

 

Рисунок 2.27 — Ступень трубопровода 

 

В статоре, жестко соединенном с корпусом турбобура, поток бурового раствора меняет свое направление и поступает в ротор, где отдает часть своей гидравлической мощности на вращение лопаток ротора относительно оси турбины. При этом на лопатках статора создается реактивный вращающий момент, равный по величине и противоположный по направлению вращающему моменту ротора. Перетекая из ступени в ступень буровой раствор отдает часть своей гидравлической мощности каждой ступени. В результате вращающие моменты всех ступеней суммируются на валу турбобура и передаются долоту. Создаваемый при этом в статорах реактивный момент воспринимается корпусом турбобура и БК.

Информация о работе Бурение нефтяных и газовых скважин