Оценка влияния частоты пульсации забойного давления на коэффициент продуктивности нефтяной скважины

Автор работы: Пользователь скрыл имя, 10 Мая 2013 в 11:33, реферат

Описание работы

Источниками сведений о параметрах пласта служат как прямые, так и косвенные методы, основанные на интерпретации результатов исследований скважин геолого-геофизических исследований, лабораторных изучений образцов породы (кернов, шлама) и проб пластовых флюидов при различных термобарических условиях (исследования РVТ, изучаемой физикой пласта), данных бурения скважин и специального моделирования процессов фильтрации ГДИС. Обработка и интерпретация результатов ГДИС связана с решением прямых и обратных задач подземной гидромеханики.

Содержание работы

Введение. ………………………………………………………………………....3
1 .Теоретическая часть…………………………………………………………….5
1.1.Основная формула теории упругого режима (уравнение Лейбензона)……5 1.2.Интерференция скважин в условиях упругого режима……………………12
2.Расчетная часть…………………………………………………………………19

2.1. Рассчитать забойное давление при пуске и остановке скважины с интервалом времени где n = 1, 2, 3, 10, 50; …………………….19
2.2.Определить среднее значение забойного давления………………………...22

2.3.Рассчитать коэффициенты продуктивности……………………………….. 23

2.4.Оценить зависимость коэффициента продуктивности от частоты пульсации
забойного давления……………………………………………………………….24

Выводы…………………………………………………………………………… 26

Литература……………………………………………………………………….,,,27

Файлы: 1 файл

Курсовая 9 вариант.DOC

— 1.51 Мб (Скачать файл)

После завершения исследований методом прослеживания уровня при  периодическом фонтанировании проводится исследование методом восстановления давления. При постоянном фонтанировании согласно обычной технологии скважина закрывается на КВД после последнего режима исследований методом "установившихся" отборов. При периодическом фонтанировании скважина закрывается на КВД после подъема уровня до устья скважины, т.е. перед началом ее фонтанирования.

Так как условия, при  которых проводятся измерения параметров в скважинах, существенно отличаются от условий работы измерительных приборов общепромышленного назначения, приборы для глубинных измерений следует рассматривать как отдельную группу средств измерительной техники.

Наиболее существенными  являются следующие особенности  работы глубинных приборов.

1. Измерения проводятся на значительном удалении от места наблюдения за показаниями приборов: глубина спуска прибора в скважину достигает 7000 м.

2. Прибор (снаряд) эксплуатируется в измеряемой, среде и подвергается действию окружающего давления, температуры и коррозионных жидкостей. В связи с увеличением глубин бурения, а также с необходимостью контроля различных процессов по интенсификации добычи нефти и газа, давление окружающей среды может достигать 1000—1500 кг×с/см2, а температура до 300—400° С.

3. Прибор спускается на проволоке или кабеле в затрубное пространство или в трубы диаметром 37—63 мм.

4. При спуске прибора в скважину через трубы на него действует выталкивающая сила тем большая, чем выше скорость встречного потока жидкости или газа и меньше проходное сечение между внутренней стенкой трубы и корпусом прибора. В отдельных случаях спуск глубинного прибора в действующие скважины представляет сложную техническую задачу.

5. Во время спуска и подъема прибор подвергается ударам, а во время работы, например, в скважине, оборудованной установками погружных электронасосов, и действию вибрационных нагрузок.

6. Время пребывания прибора в месте измерения в зависимости от вида проводимых исследований и способа эксплуатации скважин составляет от нескольких часов до нескольких месяцев.

7. Среда, в которой находится прибор, как правило, представляет собою многофазную жидкость, содержащую нефть, газ, воду и механические включения (песок, шлам и т. д.) с различными физико-химическими свойствами (плотность, вязкость, наличие солей и т. д.).

В соответствии с указанными выше особыми условиями работы к конструкции глубинных приборов предъявляется ряд требований. Вследствие воздействия на них встречного потока жидкости или газа и необходимости спуска в геометрически ограниченное пространство наружный диаметр корпуса приборов в основном не должен превышать 32—36 мм, а при спуске через 37-мм трубы или в затрубное пространство — 20—25 мм. Длина его также ограничена: обычно не превышает 2000 мм, так как увеличение ее сверх этого предела значительно осложняет операции, связанные с подготовкой прибора к спуску в фонтанные скважины. Кроме того, должна быть обеспечена полная герметичность внутренней полости прибора от внешнего давления. Особые требования предъявляются также к устройствам, расположенным в глубинном приборе и эксплуатируемым в условиях повышенной температуры, ударов и вибраций.

По способу получения  измерительной информации глубинные  приборы делятся на:

а) автономные, результаты измерения которых можно получить только после извлечения их из скважины;

б) дистанционные, обеспечивающие передачу сигнала измерительной информации по кабелю.

Выпускаемые промышленностью  автономные (самопишущие) скважинные манометры широко используют для исследования добывающих и нагнетательных скважин, а также для испытаний с помощью трубных испытателей пластов.

Манометр типа МГН-2 с многовитковой трубчатой пружиной, принципиальная схема которого приведена на рис. 10.2, а, предназначен для измерения давления в добывающих скважинах.Давление в скважине через отверстие в корпусе 9 передается жидкости заполняющей внутреннюю полость разделительного и манометрической трубчатой пружине (геликсу) 8. Под действием измеряемого давления свободный конец геликса поворачивает ось 7, на которой жестко крепится пластинчатая пружина с пишущим пером 6. Перо чертит на бланке, вставленном в каретку 5, линию, длина которой пропорциональна измеренному давлению.

 

Рис. 10.2 Схема  глубинного геликсного манометра типа МГН-2 (МГИ-1М)

 

 

Рис. 10.3. Геликсный  манометр типа МГТ-1

 

Для получения непрерывной записи давления каретка соединяется с гайкой 2, которая перемещается поступательно по направляющей 3 при вращении ходового винта 4. Равномерное вращение винта осуществляется с помощью часового привода 1.

Пружинно-поршневой манометр МПМ-4 предназначен для исследования скважин, оборудованных насосами, через затрубное пространство. Действие его основано на уравно-вешивании измеряемого давления силой натяжения винтовой цилиндрической пружины

Под влиянием скважинного давления р поршень 6 (рис. 10.4, а), уплотненный резиновым кольцом 7, деформирует винтовую цилиндрическую пружину 5 и перемещается на ход, пропорциональный измеренному давлению.

Перемещение поршня регистрируется пишущим  пером 8 на бланке, вставленном в барабан 9.

 

 

Рис. 10.4 Схемы манометров с вращающимся  поршнем

 

Внутренняя полость маноблока, где размещена винтовая пружина, заполнена жидкостью и предохраняется от загрязнения разделителем 4. В конце хода поршень садится на упор во избежание поломки пружины при дальнейшем повышении давления.

Для уменьшения трения в уплотнении поршня ему придается вращательное движение. В манометре МПМ-4 поршень жестко соединен с пишущим пером, а бланк установлен в неподвижном барабане. Вращение осуществляется с помощью электродвигателя 2, питаемого от батареи сухих элементов 1. Пишущее перо во время движения поршня чертит на диаграммном бланке винтовую линию.

Для получения четкой картины изменения  давления частота вращения поршня уменьшается  с помощью понижающего редуктора 3. Такое же медленное вращение поршня можно обеспечить, если вместо электродвигателя с редуктором применить усиленный часовой привод.

Автономные компенсационные манометры  типа «Байкал-1» предназначены для измерения и регистрации небольших (до 2,5 МПа) давлений в скважинах.

Действие  манометра основано на уравновешивании  измеряемого давления натяжением винтовой цилиндрической пружины. В отличие от пружинно-поршневых манометров прямого действия (МПМ-4) трение в записывающем устройстве этого прибора не влияет на его погрешность и чувствительность, так как деформация чувствительного элемента служит только для замыкания электрической цепи питания электродвигателя, который перемещает пишущее перо на ход, пропорциональный измеренному давлению.

Конструктивно манометр «Байкал-1» (рис. 10.5) состоит из преобразователя давления I, регистрирующего устройства II и блока питания III.

В качестве чувствительного  элемента использованы сильфоны 16 и 18 разного диаметра, имеющие общее дно 17, которое жестко соединено штоком 15 с винтовой цилиндрической пружиной 13. Второй конец пружины навинчен на якорь 12, выполненный в виде гайки, поступательно перемещающейся по ходовому винту 11, вращаемому с помощью электродвигателя постоянного тока 6. Вал электродвигателя одним концом соединен через понижающий редуктор с промежуточным винтом 9 и далее с основным винтом 11, а вторым концом также через понижающий редуктор — с винтом 5 регистрирующего устройства.

 

Рис. 10.5 Компенсационный  манометр «Байкал-1»

 

 

Рис. 10.6. Преобразователь  давления дифманометра «Онега-1»

 

Измеряемое давление через разделитель  19 воздействует на кольцевую площадь сильфона большего диаметра 18, в результате чего он деформируется и перемещает шток 16 с закрепленным на нем плечом пружинного контакта 14. При этом подвижной контакт замыкает электрическую цепь питания электродвигателя, вал которого приводит во вращение ходовые винты преобразователя давления и регистрирующего устройства. При вращении винта 11 гайка 12 деформирует пружину 13 до тех пор, пока ее натяжение не станет равным усилию, действу-ющему на сильфон 18. При равенстве усилий подвижной контакт вернется в нейтральное положение и разомкнет цепь питания электродвигателя. Частота вращения вала электродвига-теля, а следовательно, и деформация пружины будут пропорциональны измеренному давлению.

Одновременно пишущее перо 4 переместится по ходовому винту 5 на расстояние, также пропорциональное частоте вращения вала, а следовательно, измеренному давлению. Таким образом, на бланке, вставленном в барабан 3 часового привода 2, будет прочерчена линия, длина которой характеризует измеренное давление. С понижением давления подвижной контакт отклонится в другую сторону и вновь замкнет цепь электродвигателя, вал которого начнет вращаться в обратную сторону до тех пор, пока усилие, действующее на сильфон, не уравновесится натяжением пружины. В этот момент подвижной контакт снова переместится в нейтральное положение и разомкнет цепь питания электродвигателя.

Для предотвращения прибора от поломки  при повышении давления служат микровыключатели 7, которые прерывают цепь питания электродвигателя в крайних положениях ползуна 8, перемещающегося по промежуточному винту 9. Электрическое питание двигателя осуществляется с помощью элементов 1, установленных в блоке питания I, а реверс двигателя - с помощью электронного переключателя 10, смонтированного в блоке электродвигателя.

Комплексные приборы ВРГД-36 и Кобра-36РВ содержат преобразователи расхода и влажности, а также пакетирующее устройство. Преобразователь влагомера, в полости которого смонтирован магнитный прерыватель датчика расхода, выполнен в виде цилиндрического конденсатора.

Емкость конденсатора зависит от его  геометрических размеров и диэлектрической проницаемости среды, находящейся между обкладками. Изменение диэлектрической проницаемости среды при постоянных размерах конденсатора вызывает изменение его емкости, что позволяет определять фазовое соотношение в потоке воды и нефти по известным диэлектрическим постоянным отдельно воды и нефти.

Нижний конец преобразователя  влагомера используется в качестве верхней опоры оси турбинки, на которой укреплены магниты, взаимодействующие с магнитным прерывателем тока. Последовательное расположение турбинки и проточного конденсатора способствует образованию части конденсата мелкодисперсной смеси, проходящей за счет турбулизирующего эффекта вращения турбинки.

Эти приборы снабжены пакером с электромеханическим приводом, конструкция которого унифицирована с пакерующим устройством расходомера РГД-2М или Кобра-36РВ. Выходной сигнал, передаваемый на поверхность по одножильному кабелю, несет двойную информацию: о содержании воды в нефти и частоте вращения турбинки.

Частотный сигнал, модулированный по амплитуде, по кабелю поступает на вход наземного блока, где происходит его усиление и разделение на два  канала.

В первом канале происходит выделение несущей частоты, характеризующей влажность потока жидкости, во втором — модулирующей частоты, характеризующей частоту вращения турбинки

Комплексный прибор «Поток-5» предназначен для измерения четырех величин: давления, температуры, расхода и влажности жидкости. Этот прибор (рис. 11.3), опускаемый в скважину на одножильном кабеле 1, состоит из преобразователей указанных величин и пакера с электромеханическим приводом. Локатор сплош-ности, в который входят трансформаторы 2, включенные совместно, и электронный блок, обеспечивает точную привязку данных к разрезу скважины. Датчик давления состоит из геликсной пружины 8 и индуктивного преобразователя. Свободный конец геликса соединен с ферритовым полукольцом, входящим в катушку 4. С повышением или понижением давления в скважине ферритовый сердечник перемещается внутри катушки, изменяя ее индуктивность. В качестве преобразователей температуры использованы полупроводниковые элементы 6. Изменение сопротивления этих элементов, пропорциональное уменьшению или увеличению температуры окружающей среды, преобразуется в частоту. Расход измеряют с помощью датчика с заторможенной турбинкой 9. Поток жидкости, воздействуя на турбинку, вызывает закручивание струн на определенный угол, что приводит к перемещению ферритового полукольца 8 внутри катушки и изменению ее индуктивности. Содержание воды в нефти определяется с помощью емкостного датчика 10.

Катушки индуктивности  датчиков давления и расхода входят в состав колебательных контуров LC-генераторов. Поэтому при изменении индуктивности изменяется частота выходного сигнала. Преобразование индуктивности в частоту происходит в электронных блоках 5 и 7. Датчики подключаются к наземной аппаратуре последовательно посредством вызова сигнала или автоматически через 10-12 с. При подключении по вызову время измерения неограниченно. В автоматическом режиме работы время измерения составляет 2-3 с.

Пакерующее устройство состоит из пакера, образованного  металлическими пластинами 12, пары винт—гайка 15 и электродвигателя 17. Пластины пакера, образующие каркас, закреплены во втулках в два ряда. Нижняя подвижная втулка 14 соединена с гайкой, перемещающейся по ходовому винту 13, который через редуктор 16 соединен с валом электродвигателя. При открытии пакера по сигналу с поверхности гайка вначале совершает движение по винтовой линии, перемещаясь по пазу со скосом.

 

 

Пластины 12 каркаса изгибаются и прижимают надетую на них оболочку к стенкам скважины. В конце хода гайка перемещается поступательно по пазу, параллельному осевой линии, в результате чего усиливается прижатие пластин к стенкам скважины. При движении гайки по винтовой линии пластины каркаса, закрепленные шарнирно на втулке 14, поворачиваются под углом к образующей. Закрытие пакера происходит в обратном порядке. Диаметр корпуса прибора составляет 40 мм при длине 2800 мм. Предел измерения давления 25 МПа, погрешность ±1,5%. Диапазоны измеряемых расходов могут быть 1—60 или 2—150 т/сут. Предел измерения температуры -100 °С с погрешностью ±1,5%. Масса глубинного прибора не более 15 кг.

 

1.3 Приборы  и оборудование для исследования

 

При измерениях в скважинах  глубиной свыше 1500 м применяют только механизированные глубинные лебедки. Для спуска приборов в скважины (с  избыточным давлением на устье) на фонтанной арматуре должен быть установлен лубрикатор 1 (рис. 9.1), представляющий собой полый цилиндр и имеющий в верхнем торце сальник для прохода проволоки или кабеля, манометр 2 и кран 4 для сообщения лубрикатора с атмосферой. К корпусу крепится направляющий и оттяжные ролики 3 для прохода проволоки или кабеля 5.

 

Рис. 9.1. Оборудование фонтанной скважины для глубинных измерений.

 

Установка с лебедкой располагается примерно в 25—40 м  от устья. Установку ставят таким образом, чтобы вал барабана лебедей был перпендикулярен направлению движения проволоки от скважины до середины барабана.

Для подготовки глубинного прибора 6 к спуску конец проволоки от лебедки 7 пропускают через сальник лубрикатора, вывинтив его предварительно из корпуса.

Информация о работе Оценка влияния частоты пульсации забойного давления на коэффициент продуктивности нефтяной скважины