Физиология периферического кровообращения. Микроциркуляция. Физиология лимфатической системы

Автор работы: Пользователь скрыл имя, 02 Марта 2015 в 16:35, реферат

Описание работы

Системное кровообращение обеспечивает поступление крови в периферические сосуды и оттек ее, посредством механизмов регуляции АД, ОЦК, величины сердечного выброса и возврата крови к сердцу. Периферическим, или органным, называется кровообращение в пределах отдельных органов. Микроциркуляция составляет его часть, которая непосредственно обеспечивает обмен веществ между кровью и окружающими тканями (к микроцир- куляторному руслу относятся капилляры и прилегающие к ним мелкие артерии и вены, а также артериовенозные анастомозы диаметром до 100 мкм).

Содержание работы

Введение 3
Морфофункциональная характеристика основных компонентов микроциркуляторного русла. 3
Капиллярный кровоток и его особенности. 5
Лимфатическая система, ее строение и функции. 7
Лимфатические узлы 8
Функции ЛС 9
Лимфообразование 10
Состав лимфы 11
Нервные и гуморальные влияния на лимфатическую систему. Регуляция лимфотока. 12
Заключение: 13
Список используемой литературы: 13

Файлы: 1 файл

Карагандинский государственный медицинский университет.docx

— 231.97 Кб (Скачать файл)

Карагандинский государственный медицинский университет

Кафедра физиологии

 

 

СРС

Тема: ««Физиология периферического кровообращения. Микроциркуляция. Физиология лимфатической системы»».

 

                                                                                            

 

 

 

 

 

 

 

 

 

     Подготовил: студ.гр.МПД 1-003 Габдуллина А.

 

 

Оглавление

 

 

Введение

 

Системное кровообращение обеспечивает поступление крови в периферические сосуды и оттек ее, посредством механизмов регуляции АД, ОЦК, величины сердечного выброса и возврата крови к сердцу. Периферическим, или органным, называется кровообращение в пределах отдельных органов. Микроциркуляция составляет его часть, которая непосредственно обеспечивает обмен веществ между кровью и окружающими тканями (к микроцир- куляторному руслу относятся капилляры и прилегающие к ним мелкие артерии и вены, а также артериовенозные анастомозы диаметром до 100 мкм).

Кровообращение на участке периферического сосудистого русла (мелкие артерии, артериолы, капилляры, посткапиллярные венулы, артериовенулярные анастомозы, венулы и мелкие вены), кроме движения крови, обеспечивают обмен воды, электролитов, газов, необходимых питательных веществ и метаболитов по системе кровь – ткань – кровь.

Механизмы регуляции регионарного кровообращения включают, с одной стороны, влияние сосудосуживающей и сосудорасширяющей иннервации, с другой – воздействие на сосудистую стенку неспецифических метаболитов, неорганических ионов, местных биологически активных веществ и гормонов, приносимых кровью. Считают, что с уменьшением диаметра сосудов значение нервной регуляции уменьшается, а метаболической, наоборот, возрастает.

 

Морфофункциональная характеристика основных компонентов микроциркуляторного русла.

 

Пройдя по разветвлениям артериальной системы, кровь достигает микроциркулятор-

ного кровеносного русла. Под микроциркуляцией понимают процесс направленного движения жидкостей в тканях, окружающих кровеносные и лимфатические микрососуды. Кровеносные микрососуды представляют первую часть системы микроциркуляции. Второй ее частью являются пути транспорта веществ в тканях. Третью составную часть образуют лимфатические микрососуды. Все три составные части системы микроциркуляции функционально взаимосвязаны и взаимодействуют между собой.

Именно микроциркуляция обеспечивает обмен веществ во всех тканях, поддерживает необходимое для организма постоянство внутренней среды. Нарушение микроциркуляции лежит в основе многих патологических процессов, в первую очередь сосудистых заболеваний.

Микроциркуляторное кровеносное русло состоит из нескольких звеньев, обладающих присущими им анатомическими и функциональными особенностями.

Артериолыпредставляют собой начальное звено микроциркуляторного русла.

Диаметр артериол составляет 15-30 мкм. Стенка артериол, как и артерий, состоит из 3 оболочек – внутренней, средней и наружной, однако клеточные элементы имеют в них однослойное расположение. Благодаря наличию гладких миоцитов стенка артериол может сокращаться и просвет их суживается. Артериолы связаны между собой анасто- мозами. Это способствует выравниванию кровотока на входе в систему микроциркуляции.

Прекапилляры, или прекапиллярные артериолы, имеют диаметр 8-20 мкм и обычно

ответвляются от артериол под прямым углом. В местах отхождения прекапилляров и на их протяжении мышечные клетки образуют прекапиллярные сфинктеры, которые регулируют поступление крови в капилляры. Артериолы и прекапилляры благодаря своей сократительной активности обеспечивают распределение крови между отдельными участками капиллярного русла.

Кровеносные капиллярыпредставляют собой основное структурное звено микроциркуляторной системы. Они наиболее тесно связаны с тканевыми элементами органов и играют главную роль в обмене веществ между кровью и тканями. Скорость кровотока в капиллярах – 0.8 мм/с. Капилляры распространены почти повсеместно.

Они отсутствуют только в эпителии кожи и слизистых, дентине и эмали зубов, эндокарде клапанов сердца, роговице и внутренних прозрачных средах глазного яблока. Капилляры – это тонкостенные эндотелиальные трубки, лишенные сократительных элементов. Они могут быть прямыми, штопоро- и винтообразными, изогнутыми в видешпилек или закрученными в клубки. Средняя длина капилляров – около 750 мкм. Капилляры не имеют боковых ветвей, поэтому они не ветвятся, а разделяются на новые капилляры и соединяются между собой, образуя капиллярные сети. Форма, пространственная ориентация и густота капиллярных сетей органоспецифичны и связаны с конструкцией и функциональными особенностями органов. Диаметр капилляров варьирует от 2-4 до 30-40 мкм. Узкие капилляры имеются в легких, головном мозге, гладкихмышцах внутренностей. Большой диаметр имеют капилляры в железах. Наиболее широки синусоидные капилляры печени, селезенки, костного мозга, некоторых эндокринных желез. У капилляров имеются артериальные и венозные части, однако морфологические различия между ними выявляются только на электронномикроскопическом уровне.

По функциональному состоянию выделяет следующие виды капилляров:

1. Функционирующие, открытые  капилляры.

2. Плазматические, полуоткрытые  капилляры, содержащие только плазму  крови.

3. Закрытые, резервные капилляры.

Соотношение между числом открытых и закрытых капилляров определяется функциональным состоянием органа. Если уровень обменных процессов длительное время понижен, то количество закрытых капилляров увеличивается, и часть их подвергается редукции. Это происходит, например, в мышцах при значительном снижении двигательной активности у больных, долго лежавших в постели, при иммобилизации конечностей с переломами и т.д. С другой стороны, может происходить новообразование капилляров.

Посткапилляры, или посткапиллярные венулы, образуются в результате слияния капилляров. Они обладают тонкими, растяжимыми стенками, лишенными мышечных клеток. Диаметр посткапилляров составляет 8-30 мкм. Посткапилляры впадаютв венулы, вместе с которыми они составляют первые компоненты венозной системы.

Венулыимеют диаметр 30-100 мкм, их стенка толще, чем у посткапилляров, и в ней

появляются мышечные клетки. Венулы соединяются анастомозами между собой и с венами, образуя сложно устроенные сети. Наличие в венулах расширенных участков указывает на их резервную функцию. В венулах и мелких венах обнаружены мышечные сфинктеры и клапаны, регулирующие отток крови из капиллярного бассейна.

Важную роль в регуляции кровотока в микроциркуляторном русле играют артериоловенулярные, или артериовенозные анастомозы. Они представляют собой прямые соединения между артериями и венами. Количество артериоловенулярных анастомозовв расчете на 1 см2 составляет от 15-30 в ушной раковине кролика до 500 в мякоти пальцев.

По классификации В.В.Куприянова, артериоловенулярные анастомозы подразделяются на шунты и полушунты. Шунтыпредставляют собой пути ускоренного кровотока, по которому артериальная кровь сбрасывается в венозное русло в обход капилляров. Таким образом, наряду с обычным транскапиллярным прохождением крови происходит внекапиллярный, или юкстакапиллярный, кровоток. Этим достигается разгрузка капиллярного русла. В отличие от шунтовполушунтыобладают капиллярным фрагментом, поэтому по ним в венозное русло поступает смешанная кровь. Шунты и полушунты подразделяются на анастомозы с постоянным и регулируемым кровотоком. Анастомозы с регулируемым кровотоком обладают запирательными механизмами, которые состоят из гладких миоцитов, образующих мышечные муфты, или представляют подушки внутренней оболочки, построенные из особых эпителиоидных клеток, способных к набуханию. Подобные приспособления характерны для артериоловенулярных анастомозов гломусного типа. Артериоловенулярные анастомозы способны быстро замыкаться и

размыкаться. Если принять, что диаметр анастомоза в 10 раз больше, чем диаметр

кровеносного капилляра, то согласно закону Пуазейля кровоток через анастомоз за единицу времени превышает таковой в капилляре в 104, то есть в 10 000 раз. Таким образом, в смысле продвижения крови один артериоловенулярный анастомоз эквивалентен 10 тысячам капилляров.

Артериоловенулярные анастомозы появляются во второй половине внутриутробного

периода. Осуществляя смешение артериальной и венозной крови, эти образования

выполняют у плода функцию, аналогичную овальному отверстию или артериальному протоку. В постнатальном периоде могут происходить как новообразование, так и редукция артериоловенулярных анастомозов Увеличение количества анастомозов отмечается в некоторых органах при патологических состояниях. Например, это происходит в легком при его эмфиземе, когда затрудняется транскапиллярный кровоток.

Микроциркуляторное кровеносное русло представляет собой сложную многоканальную систему, которая имеет свои вход и выходы. Структура этой системы определяется пространственной упорядоченностью образующих ее сосудистых элементов, их отношением ко входам и выходам системы, а также к параллельно расположенным элементам. В микроциркуляторном русле выделяют рабочие единицы (модули) в виде автономных микрососудистых комплексов, имеющих изолированные пути притока и оттока крови и обеспечивающих тканевой гомеостаз в тех участках тканей, которые снабжаются каждым из этих комплексов. Строение микрососудистых комплексов связано с конструкцией органов. Последняя определяет пространственную организацию всего микроциркуляторного русла. В пластинчатых образованиях, оболочках сосудистые сети имеют двумерное расположение, в полых органах они располагаются послойно, образуя многоярусные конструкции, в паренхиматозных органах имеют трехмерную организацию. Соотношение компонентов микроциркуляторного русла в различных органах имеет

свои особенности. Для скелетных мышц и сетчатки глаза характерно пропорциональное развитие артериальных и венозных частей микрососудистого русла. В слизистой оболочке желудка и кишечника, паренхиме легких, сосудистой оболочке глазного яблока капилляры преобладают над другими микроциркуляторными структурами. Минимальное количество капилляров найдено в сухожилиях, фасциях, склере глазного яблока. Преобладание венозного компонента отмечено в микроциркуляторном русле синовиальных складок и ворсинок, эндокринных органов. Преобладание венулярных сосудов обеспечивает замедление кровотока, депонирование определенной части крови, что необходимо для более полного транссосудистого обмена между кровью и рабочими элементами органа.

 

Капиллярный кровоток и его особенности.

 

Важным в функциональном отношении отделом сосудистой системы являются капилляры, относящиеся к обменным сосудам. Они обеспечивают газообмен, снабжение клеток питательными, пластическими веществами, и выведение продуктов метаболизма. Обмен происходит также в венулах.

В покое кровь циркулирует лишь в 25–35% всех капилляров. В регуляции капиллярного кровотока участвуют артериолы, метартериолы, венулы. Совокупность сосудов от артериол до венул называют терминальным (микроциркуляторным) руслом. Они составляют общую функциональную единицу.

Плотность капилляров в разных органах значительно варьирует. Большое количество их содержится в миокарде, мозге, печени, почках — до 2500–3000 капилляров на 1 мм2. Меньше в костной, жировой, соединительной тканях. Кровь соприкасается с очень большой поверхностью капилляров и в течение довольно длительного времени.

Диаметр капилляров составляет от 5 до 30 мкм.

Длина одного капилляра равна 0,5–1,1 мм. Общая поверхность всех капилляров составляет около 1000 м2. Общая площадь сечения всех капилляров большого круга от 8000 см2 до 11000 см2. В местах отхождения капилляров от артериол гладкомышечные клетки образуют прекапиллярные сфинктеры. В других участках капилляров таких элементов нет.

Стенка капилляров представляет собой полупроницаемую мембрану, тесно связанную функционально и морфологически с межклеточным веществом, то есть капилляры неотделимы от органов, они являются составной частью самих органов. Встречаются плоские, петлистые капилляры, они легко растягиваются, соответствуют диаметру эритроцитов, которые способны, проходя через капилляры, изменять свою форму.

Стенки капилляров состоят из 2-х оболочек: внутренней — эндотелиальной и наружной — базальной. В зависимости от ультраструктуры стенок капилляров их можно разделить на 3 типа:

1. Соматический тип — имеет непрерывную эндотелиальную и базальную оболочки, имеет большое количество мельчайших пор (4–5 нм). Легко пропускают воду и минеральные вещества. Встречаются в скелетной и гладкой мускулатуре, жировой и соединительной ткани, легких, коре мозга.

2. Висцеральный тип — имеет «окошки» (фенестры), с диаметром — 0,1 мкм. Часто прикрыты тончайшей мембраной. Встречаются в почках, пищеварительном канале, эндокринных железах.

 

3. Синусоидный тип — базальная мембрана частично отсутствует, эндотелиальная оболочка прерывиста, с большими интерстициальными просветами. Через них проходят жидкости, клетки крови, макромолекулы. Локализованы в костном мозге, печени, селезенке.

 

Для функции капилляров большое значение имеют скорость кровотока в них, проницаемость стенок, величина гидростатического и онкотического давления, число перфузируемых капилляров. Средняя линейная скорость в капиллярах составляет 0,5–1 мм/с. Каждая клетка крови находится в капилляре приблизительно равно 1,0 с.

Гидростатическое давление в капиллярах зависит от сопротивления в артериях и артериолах. В капиллярах оно продолжает снижаться и составляет в артериальном конце 30–35 мм Hg, в венулярном конце 15–20 мм Hg.

Информация о работе Физиология периферического кровообращения. Микроциркуляция. Физиология лимфатической системы