Современные технологии цифровой печати

Автор работы: Пользователь скрыл имя, 07 Мая 2015 в 22:54, лекция

Описание работы

Сейчас мы попытаемся дать наиболее полное представление об используемых технологиях цифровой печати и провести сравнительную оценку некоторых моделей оборудования, представленных на казахстанском рынке.
Можно выделить два магистральных направления или концепции развития конструкции цифровых печатных машин:
– создание изображения при каждом обороте формного цилиндра (формный цилиндр покрыт слоем полупроводника, а образующееся изображение представляет так называемую «виртуальную» форму);
– создание изображения на специальном формном материале, закрепленном на формном цилиндре.

Содержание работы

Введение 3
1. Современные технологии цифровой печати 4
2. Технология цифрового экспонирования офсетных форм 9
3. Цифровая печатная машина Quickmaster DI 14
4. Цветопробное оборудование 16
5. Программное обеспечение и управление цветом 19
Заключение 22
Список использованной литературы 23

Файлы: 1 файл

ЦИФРОВЫЕ ТЕХНОЛОГИИ.doc

— 113.00 Кб (Скачать файл)

Фотополимерные цилиндрические формы. Схема изготовления этих форм характеризуется рядом отличительных особенностей. Цилиндрические формы (рукавные, реже бесстыковые – пластинчатые со спаянными краями) изготавливаются на фотополимеризуемом материале с масочным слоем. Этот материал размещен на гильзе и, как правило, предварительно подвергается экспонированию с оборотной стороны (эта операция проводится при его изготовлении). Процесс изготовления форм осуществляется, как и для пластинчатых, сначала на ЛЭУ проводится запись информации на масочный слой. Дальнейшие операции, начиная с основного экспонирования, выполняются аналогично изложенной выше схеме на оборудовании, обеспечивающем возможность кругового экспонирования и обработки.

Эластомерные цилиндрические формы. Получение эластомерных печатных форм по цифровой технологии осуществляется прямым лазерным гравированием и включает операции по изготовлению формного цилиндра, представляющего собой обрезиненный стержень, подготовке его поверхности к лазерному гравированию, заключающейся в обтачивании и шлифовании резинового покрытия. В дальнейшем на нем проводится прямое лазерное гравирование, очистка гравированной поверхности цилиндра от остатков продуктов горения резины и контроль формы. При использовании гильз с резиновым покрытием, специально предназначенным для лазерного гравирования, подготовка поверхности не проводится и, следовательно, сокращается количество операций процесса получения формы.

Полимерные цилиндрические формы. Цилиндрические формы могут быть получены на полимерных материалах (цилиндрических бесшовных гильзах, реже бесстыковых пластинчатых). Изготавливаются они в одну стадию на одной единице оборудования. После контроля ЭВПФ и выбора режимов гравирования непосредственно осуществляется гравирование лазерным излучением.

Фотополимерные печатные формы. Формирование печатающих элементов пластинчатых и цилиндрических ФППФ, изготовленных по цифровой масочной технологии, происходит одинаково, в процессе основного экспонирования ФПС формного материала. Поскольку основное экспонирование УФ-А излучением осуществляется через маску (в отличие от экспонирования через фотоформу в аналоговой технологии) и протекает в воздушной среде, то, вследствие контакта ФПС с кислородом воздуха, происходит ингибирование процесса полимеризации, вызывающее уменьшение размеров формирующихся печатающих элементов. Они оказываются несколько меньше по площади, чем их изображения на маске.

Это происходит потому, что ФПС открыт для воздействия кислорода воздуха (либо, как считают ряд исследователей, за счет образовавшегося при экспонировании озона, который обладает большей химической активностью и может ускорять процесс окисления). Молекулы кислорода воздуха быстрее реагируют по открытым связям, чем мономеры друг с другом, что приводит к торможению или частичному прекращению процесса полимеризации.

Результатом воздействия кислорода является не только некоторое уменьшение размеров печатающих элементов (в большей мере это сказывается на мелких растровых точках), но и снижение их высоты.

Определенные отличия характерны и для профиля печатающих элементов. Так, печатающие элементы на формах, изготовленных по цифровой технологии, имеют более крутые боковые грани, чем печатающие элементы форм, полученных по аналоговой технологии. Объясняется это тем, что при основном экспонировании через фотоформу излучение прежде, чем достичь ФПС, проходит через несколько сред и слоев (воздух, прижимную пленку, фотоформу), последовательно преломляясь на границах и рассеиваясь в каждом из слоев. Это приводит к образованию печатающего элемента с более пологими гранями на формах, изготовленных аналоговым способом. Практически полное отсутствие светорассеяния при основном экспонировании через маску, которая является составной частью формной пластины, позволяет получить печатающие элементы с более крутыми гранями. Такие особенности печатающих элементов форм, изготовленных по масочной технологии, сказываются на уменьшении растискивания в процессе печатания, а характерное для печатающих элементов расширение у основания придает формам большую стабильность в печатном процессе.

Формирование пробельных элементов, как и в аналоговой технологии, происходит при вымывании или термической обработке экспонированных ФПП, поэтому процесс их образования не имеет существенных отличий. Наличие масочного слоя на неэкспонированных участках не оказывает влияния на процесс формирования пробельных элементов. В случае вымывания и термической обработки этот слой удаляется вместе с незаполимеризованным слоем.

 

3. Цифровая печатная машина Quickmaster DI

 

Heidelberg Druckmaschinen AG В своих разработках машин цифровой печати GTO DI Quikmaster DI фирма Heidelberg также применяет печатные формы, выпускаемые компанией Presstek. Разница состоит лишь в том, что подложка формы является полиэстровой и состоит из трех слоев, а не из четырех, как используемая у Karat. На рисунке представлена структурная схема такой печатной формы. Размер записанного элемента составляет 35 мкм, а максимально достижимое разрешение – 2540 dpi. Для экспонирования пластины формата 460x340 мм со стандартным разрешением 1270 dpi нужно около 6 минут (при экспонировании с максимальным разрешением требуется в два раза больше времени). В машине Quickmaster DI рулон формного материала, установленный внутри формного цилиндра, рассчитан на изготовление 35 печатных форм. Тиражестойкость формного материала – около 20 000 оттисков при скорости печати до 10 000 отт./час, при этом концепция, заложенная в машину, предусматривает работу с любыми тиражами, начиная с 200 экземпляров.

Рис.3.1 – Цифровая печатная машина Quickmaster DI

Работа начинается с того, что полиэстровый формный материал из специальной кассеты 1 закрепляется на формных цилиндрах 2. Полученные из растрирующего процессора изображения экспонируются с помощью лазерного диода 3 на формный материал. При этом достигается разрешающая способность 2540 dpi.

Печатная секция представляет собой планетарное построение. На каждую пластину с помощью красочных аппаратов 4 поочередно наносится краска. Изображение с формного переходит на офсетный цилиндр 5 и далее, используя печатный цилиндр 6, закрепляется на запечатываемом материале. Материал автоматически подается со стапеля самонаклада 7 и выводится в приемку 8 с помощью ленточного транспортера 9. Узел очистки офсетного полотна 10.

Quickmaster DI, позволяет работать с 6 печатными, а также лакирующей секциями. Quickmaster DI, в производительности, у модели запись происходит лазерными головками мощностью 40 Вт в каждой секции теплового лазера, луч которого расщепляется на 198 частей. Модель может работать как с офсетом без увлажнения, так и с традиционным офсетом.

 

4. Цветопробное оборудование

 

Для того, чтобы объективно оценить качество тиражного отпечатка еще до его изготовления выполняют пробные отпечатки. Если тираж предполагается черно-белым, то пробный отпечаток можно выполнить на обыкновенном лазерном принтере; остается учесть лишь разницу в разрешении отпечатка с принтера и тиражного. Основные трудности возникают, если требуется не черно-белый, а цветной пробный отпечаток. Идеальный вариант – это отпечаток, выполненный теми же красками и на том же оборудовании, что и тираж. Но это дорого, долго и, следовательно, не очень удобно. Для быстрого, удобного и недорогого выполнения таких пробных отпечатков были придуманы цветопробные устройства. Цветопробные устройства разделяются на два больших класса: аналоговые и цифровые.

Первыми появились аналоговые цветопробные устройства (цветопробы). Имеется ряд неоспоримых преимуществ аналоговых цветопроб над цифровыми. Но при выборе аналогового цветопробного устройства необходимо помнить, что аналоговая цветопроба, как правило, является достаточно большим устройством и требует наличия квалифицированного оператора. Кроме того, аналоговые цветопробы не могут использоваться там, где нет фотоформ, например, в технологии Computer-to-Plate.

Аналоговые цветопробы

Свое название этот класс получил в силу особенности технологического процесса: в качестве исходной информации используются обычные фотоформы, изображение с которых контактным способом переносится на основу. Если выполненный отпечаток устраивает по качеству, то эти же фотоформы используются при изготовлении офсетных пластин для печати тиража. Таким образом, пробный отпечаток практически идентичен тиражному (как по цвету, так и по структуре растра). Это является большим преимуществом аналоговых цветопроб. В аналоговых цветопробах могут использоваться не только базовые СМУК-цвета, но и дополнительные цвета – например из библиотеки РА1МТОМЕ, что позволяет выполнять цветопробы для нестандартных печатных процессов.

Этих недостатков лишены цифровые цветопробы. Цифровые цветопробные устройства по существу представляют собой обычные цветные принтеры. Отличие состоит в том, что цифровые цветопробы используют СМУК-тоне-ры (в некоторых случаях используются дополнительные цвета), имеют достаточно большой цветовой охват (обычно шире, чем у офсетных прессов) и работают под управлением программного обеспечения, позволяющего эмулировать цветовые стандарты офсетных прессов. Кроме того, в ряде случаев имеется возможность эмулировать и цвет (оттенок) тиражной бумаги. У цифровых цветопроб так же имеются и недостатки. В первую очередь они связаны с ограниченным разрешением цветных принтеров, что приводит к невозможности эмулировать форму растра (исключение составляют принтеры, использующие струйную непрерывную технологию печати). Таким образом на цифровых цветопробах в основном получают лишь эмуляцию цвета. Второй недостаток – это невозможность печати специальных простых цветов - металлизированных, флюоресцентных, высоко насыщенных.

Какие технологии и принципы используются в цветопробах? В аналоговых используются две основных технологии работы – «мокрая» и «сухая». В мокрой технологии листовые тонерные пленки экспонируются в копировальной раме через фотоформы и обрабатываются в жидких реактивах (отсюда и название процесса – мокрый). В сухой технологии так же используются листовые тонерные пленки, которые перед экспонированием накатываются в ламинаторе на основу, засвечиваются и разделяются. Неэкспонированные места удаляются, а экспонированные – прилипают к основе. Процесс повторяется для каждого цветового слоя. И «мокрый» и «сухой» процесс имеют вариации в технологиях, но основная идея такая как было описано выше.

Для цифровых цветопроб используется несколько технологий цветной печати, каждая из которых имеет преимущества и недостатки. Наиболее распространенная технология – термо-сублимационная. При этой технологии краситель в виде пара осаждается в одну и ту же точку растра, что обеспечивает полную шкалу оттенков без растрирования (фотографическое качество). У этой технологии наиболее широкий цветовой охват. Далее в порядке уменьшения распространенности идут струйная пузырьковая, лазерная, струйная непрерывная, твердо-чернильная технологии.

Выполнение цветопробы является важным участком в допечатном процессе. По этой причине к подбору оборудования для цветопробы следует отнестись максимально ответственно. Большинство типографий в качестве цветопроб признают только аналоговые цветопробные отпечатки и это во многом определяет выбор пользователя. Идеальным вариантом является наличие и аналоговой и цифровой цветопробы. При этом достигается компромисс между качеством, оперативностью и совместимостью.

 

5. Программное обеспечение и управление  цветом

 

При подготовке цветной полиграфической продукции максимум внимания всегда уделяется качеству цветопередачи. Добиться поистине высококачественного цвета можно только с применением специальных программных и аппаратных инструментов. Работу с цветом в допечатном комплексе логически можно разделить на две части: цветокоррекция и цветосинхронизация. Эти части могут использоваться как независимо друг от друга, так и в комплексе, дополняя друг друга.

Цветокоррекция – это набор действий, направленных на преобразование изображения, при котором достигается требуемое сочетание цветов. Если требуется убрать цветовую вуаль с изображения – выполняют цветокоррекцию. Если требуется добавить цветовую вуаль определенного тона (довольно распространенный дизайнерский прием), – опять выполняют цветокоррекцию. Но наиболее распространенное применение цветокоррекции – это «вытягивание» цветов на изображениях, в которых эти цвета представлены не достаточно хорошо. Например, если готовится изображение пляжа и моря в рекламный проспект туристической фирмы, то цвет у песка должен быть чистым и желтым, цвет у неба – ярко голубым, а цвет у моря – бирюзовым. На слайдах, как правило, эти цвета немного грязноваты, не так насыщены и не того тона. Используя средства обычных программ, например Adobe Photoshop, трудно выполнять такие “естественные” коррекции. По этой причине для цветокоррекции применяется специализированное ПО – LinoColor производства Heidelberg Prepress. Выполнение цветокоррекции, как правило, совмещают со сканированием. Для этого в программе LinoColor помимо инструментов для цветокоррекции имеется интерфейс для управления сканерами (которые так же производятся Heidelberg Prepress).

В процессе работы над цветным изображением, это изображение проходит ряд устройств, в которых применяются различные способы его отображения (или ввода). Типичными устройствами являются: цветной сканер, цифровая камера, монитор, цветопробный принтер, офсетный пресс. Каждое из этих устройств имеет свой уникальный набор цветов, которые это устройство может отобразить (или распознать). Этот набор называется цветовой охват устройства. Таким образом одно и тоже изображение на устройствах с различными цветовыми охватами будет выглядеть по разному. Это приводит к тому, что изображение на выходе значительно отличается от задуманного. Чтобы свести к минимуму такие искажения в допечатных комплексах применяют системы цветосинхронизации.

Задача таких систем состоит в том, чтобы так скорректировать цвет изображения при переходе от одного устройства к другому, чтобы компенсировать разницу цветовых охватов этих двух устройств. Для этого используется ядро, выполняющее все расчетные операции и набор цветовых профилей (своеобразных паспортов цветных устройств), в которых имеется информация о цветовом охвате устройства, модели построения гаммы цветов из базовых (RGB, CMYK, YCC и т.п.). Наиболее распространенной системой цветосинхронизации является Apple Color Sync. Ее популярность обеспечивается двумя факторами: достаточно хорошим качеством преобразованных изображений и тем фактом, что ColorSync интегрирован в операционную систему MacOS и может быть использован любым пользователем. Система ColorSync будет обеспечивать качественный результат только в том случае, если цветовые профили устройств правильно и качественно построены. Таким образом задача качественной передачи цвета сводится к правильному построению профилей устройств. Процесс построения профиля для устройства называется характеризацией устройства. Для профилей устройств был разработан универсальный формат, позволяющей различным системам цветосинхронизации использовать одни и те же профили. Такой стандарт на профили получил название ICC. Для построения ICC-профилей имеется достаточно большое количество программ, которые различаются по уровню сервиса, возможностям, универсальности и стоимости. Вниманию пользователей предлагается два решения, относящихся соответственно к бизнес-классу и классу Hi-End – программа Color Synergy производства компании Candela и набор программ ColorOpenICC производства Heidelberg Prepress.

Информация о работе Современные технологии цифровой печати