Якоб Берцелиус

Автор работы: Пользователь скрыл имя, 09 Декабря 2012 в 14:22, биография

Описание работы

Шведский химик Йенс Якоб Берцелиус (20 августа 1779, селение Веверсунда, близ Линчепинга, Швеция - 7 августа 1848, Стокгольм), родился в семье директора школы. В девятилетнем возрасте он остался сиротой - после смерти отца его мать вторично вышла замуж, но после рождения второго ребенка заболела и умерла. Поэтому он с юных лет вынужден был зарабатывать себе на жизнь на сельскохозяйственных работах.

Файлы: 1 файл

берцелиус.docx

— 43.85 Кб (Скачать файл)

Таким образом, название селен как  бы подчеркивает, что этот элемент - спутник Теллура, подобно тому, как  Луна спутник Земли. Добавим к  этому, что Берцелиусу пришлось провести большое сравнительное исследование реакций селена и теллура. В русской  литературе первых десятилетий XIX в. селен  называли селением (Соловьев и Двигубский, 1824; Гесс, 1831); Страхов употребляет название селин (1825). После 1835 г. было принято название селен.  

 

Открытие кремния 

 

Несмотря на распространенность в  природе, этот элемент открыли сравнительно поздно. В 1825 г. Йенс ЯкобБерцелиус сумел в двух реакциях выделить не очень чистый аморфный кремний в виде коричневого порошка. Для этого он восстановил металлическим калием газообразное вещество, известное ныне как тетрафторид кремния SiF4, и кроме того, провел такую реакцию:

K2SiF+ 4К → 6KF + Si.

Новый элемент был назван силицием (от латинского silex - кремень). Русское название этого элемента появилось спустя девять лет, в 1834 г., и благополучно дожило, в отличие, скажем, от <буротвора>, до наших дней.  

 

История открытия Титана 

 

Много лет считалось, что металлический  титан впервые был получен  Берцелиусом в 1825 г. при восстановлениифтортитаната калия металлическим натрием. Однако сегодня, сравнивая свойства титана и продукта, полученного Берцелиусом, можно утверждать, что президент Шведской академии наук ошибался, ибо чистый титан быстро растворяется в плавиковой кислоте (в отличие от многих других кислот), а металлический титан Берцелиуса успешно сопротивлялся ее действию.

В действительности титан был впервые  получен лишь в 1875 г. русским ученым Д.К. Кирилловым. 

 

Открытие Циркония 

 

Через 35 лет после опытов Клапрота Йенсу Якобу Берцелиусу удалось получить металлический цирконий. Берцелиус восстановил фторцирконат калия металлическим натрием:

К2[ZrF6] + 4Na → Zr + 2KF + 2NaF

и получил серебристо-серый металл. Цирконий, образовавшийся в результате этой реакции, был хрупким из-за значительного  содержания примесей. Металл не поддавался обработке и не смог найти практического  применения. Но можно было предположить, что очищенный цирконий, подобно  многим другим металлам, окажется достаточно пластичным.

В XIX и начале XX в. многие ученые пытались получить чистый цирконий, но все попытки долгое время заканчивались неудачей. Не помог испытанный алюмотермический метод, не привели к цели опыты, авторы которых стремились получить металлический цирконий из растворов его солей. Последнее объясняется в первую очередь высоким химическим сродством циркония к кислороду.

Для того чтобы можно было получить какой-либо металл электролизом из раствора его соли, этот металл должен образовывать одноатомные ионы. А цирконий таких  ионов не образует. Сульфат циркония Zr(SO4)2, например, существует только в концентрированной серной кислоте, а при разбавлении начинаются реакции гидролиза и комплексо-образования. В конечном счете получается:

Zr(SO4)+ Н2О → (ZrO)SO+ H2SO4

В водном растворе гидролизуется и хлористый цирконий:

ZrCl+ Н2О → ZrOCl+ 2HCl

Некоторые исследователи считали, что им удалось-таки получить цирконий электролизом растворов, но они были введены в заблуждение видом  продуктов, осевших на электродах. В  одних случаях это были действительно  металлы, но не цирконий, а никель или  медь, примеси которых содержались в циркониевом сырье; в других - внешне похожая на металл гидроокись циркония.

Лишь в 20-х годах нашего столетия (через 100 лет после того, как Берцелиус  получил первые образцы циркония!) был разработан первый промышленный способ получения этого металла.

Это метод <наращивания>, разработанный  голландскими учеными ван Аркелем и де Буром. Суть его заключается в том, что летучее соединение (в данном случае тетрайодид циркония ZrI4) подвергается термическому распаду в вакууме и на раскаленной нити вольфрама откладывается чистый металл.

Этим способом был получен металлический  цирконий, поддающийся обработке - ковке, вальцовке, прокатке - примерно так  же легко, как медь. 

 

Открытие Ванадия 

 

Вот как описывает историю открытия ванадия Берцелиус:

<В давние-давние времена на  далеком севере жила Ванадис, прекрасная и любимая всеми богиня. Однажды кто-то постучал в ее дверь. Богиня удобно сидела в кресле и подумала: <Пусть он постучит еще раз>. Но стук прекратился, и кто-то отошел от дверей. Богиня заинтересовалась: кто же этот скромный и неуверенный посетитель? Она открыла окно и посмотрела на улицу. Это был некто Вёлер, который поспешно уходил от ее дворца.

Через несколько дней вновь услышала она, что кто-то стучится к ней, но на этот раз стук настойчиво продолжался  до тех пор, пока она не встала и  не открыла дверь. Перед ней стоял  молодой красавец Нильс Сёвстрем. Очень скоро они полюбили друг друга, и у них появился сын, получивший имя Ванадий. Это и есть имя того нового металла, который был открыт в 1831 году шведским физиком и химиком Нильсом Сёвстремом>.

В этом рассказе имеется неточность. Первым, кто <постучал> в комнату  богини Ванадис, был не немецкий химик Фридрих Вёлер, а замечательный мексиканский химик и минералог Андрее Мануэль дель Рио. Еще задолго до Вёлера, в 1801 году, изучая бурые свинцовые руды Мексики, дель Рио обнаружил, что в них присутствует неизвестный в то время металл. Соединения нового металла были окрашены в самые разнообразные цвета, поэтому ученый назвал открытый им элемент <панхромом>, т. е. <всецветным>, а позднее заменил это название на <эритроний>, что означает <красный>.

Однако научно подтвердить свое открытие дель Рио не смог. Более того, в 1802 году он пришел к выводу, что новый элемент - это открытый незадолго до того хром. Ту же ошибку спустя несколько лет повторил Вёлер, который так робко <стучался в дверь богини Ванадис>.

Лишь спустя почти тридцать лет  состоялось второе рождение ванадия. На этот раз у колыбели новорожденного стоял молодой шведский ученый Нильс Сёвстрем. В то время в Швеции начала развиваться металлургия. В разных частях страны появлялись заводы. И вот что было замечено: металл, выплавленные из железных руд одних месторождений, был хрупким, в то время, как из других руд получался весьма пластичный металл. Чем объяснить такое различие? Сёвстрем решил найти ответ на этот вопрос.

Исследуя химический состав руд, из которых был выплавлен металл высокого качества, ученый после долгих опытов сумел доказать, что в этих рудах содержится новый элемент, причем именно тот, который в свое время был обнаружен дельРио и ошибочно принят им за хром. Новый металл был назван ванадием.

Ни дель Рио, ни Вёлеру не суждено было стать <крестными отцами> нового элемента, хотя они были близки к этому. После успеха Сёвстрема Вёлер писал своему другу: <Я был настоящим ослом, что проглядел новый элемент в бурой свинцовой руде, и прав был Берцелиус, когда он не без иронии смеялся над тем, как неудачно и слабо, без упорства стучался я в дом богини Ванадис>. 

 

Спор Берцелиуса с Озанном  

 

В год распоряжения Канкрина о чеканке монет профессор Юрьевского университета Озанн, исследуя образцы уральской платины, пришел к заключению, что ее сопровождают три новых металла. Один из них Озанн назвал полураном, второй - полином, а третьему в честь латинского названия. России - Рутения дал имя - рутений. "Открытие" Озанна химики встретили с недоверием. Особенно протестовал Берцелиус, авторитет которого в то время был поистине мировым. Возникший междуОзанном и Берцелиусом спор взялся разрешить профессор химии Казанского университета К. К. Клаус. Получив в свое распоряжение небольшое количество остатков от чеканки платиновой монеты, Клаус обнаружил в них новый металл, за которым и сохранил название рутений, предложенное Озанном. 13 сентября 1844 г. Клаус сделал в Академии наук сообщение о новом элементе и его свойствах. В 1845 г. доклад Клауса под названием "Химические исследования остатков уральской платиновой руды и металла рутения" вышел в свет в виде отдельной книги". Малое количество изученного материала - не более шести граммов совершенно чистого металла - не позволило мне продолжать мои исследования", - писал Клаус в своей книге. Однако полученные данные о свойствах нового металла дали возможность Клаусу твердо заявить об открытии нового химического элемента.

Желая ознакомить иностранных ученых с открытием нового элемента, Клаус  послал образец металла Берцелиусу. Ответ Берцелиуса был по меньшей мере странным. Имея в руках новый элемент с подробным описанием свойств, он не согласился с мнением Клауса. Берцелиус заявил, что полученный от Клауса металл есть "проба нечистого иридия", давно известного элемента. Позднее Берцелиус вынужден был признать свою ошибку. 

 

Взгляды Берцелиуса и Дюма на уксусную и хлоруксусную кислоту.  

 

Берцелиус, его ученики и последователи  бурно оспаривали правильность работ  Дюма. В немецком журнале <Annalen derChemie und Pharmacie> появилось издевательское письмо знаменитого немецкого химика Фридриха Вёлера под псевдонимом S.С.Н. Windier (по немецки <Schwindler> значит <лжец>, <обманщик>). В нем сообщалось, что автору удалось заместить в клетчатке (С6Н10O5) и все атомы углерода, водорода и кислорода на хлор, причем свойства клетчатки при этом не изменились. И что теперь в Лондоне делают теплые набрюшники из ваты, состоящей из чистого хлора. 

 

            Исследуя взаимодействие органических  веществ с хлором, французский  химик XIX в. Жан Дюма сделал поразительное открытие: хлор способен замещать водород в молекулах органических соединений. Например, при хлорировании уксусной кислоты сначала один водород метильной группы замещается на хлор, затем другой, третий. Но самым поразительным было то, что по химическим свойствам хлоруксусные кислоты мало чем отличались от самой уксусной кислоты. Обнаруженный Дюма класс реакций был совершенно необъясним господствовавшими в то время электрохимической гипотезой и теорией радикалов Берцелиуса (по выражению французского химика Лорана, открытие хлоруксусной кислоты было подобно метеору, который разрушил всю старую школу).

            Берцелиус, распределяя элементы  на электроположительные и электроотрицательные, не признавал возможности замещения  в органических веществах, без  глубокого изменения их химических  свойств, водорода (элемента электроположительного)  хлором (элементом электроотрицательным). При этом не изменялись внешние  свойства молекулы. Почему Дюма  и задается вопросом "покоятся  ли электрохимические воззрения  и представления о полярности, приписываемой молекулам (атомам) простых тел, на столь ясных  фактах, чтобы их можно было  считать предметами безусловной  веры; если же их должно рассматривать  как гипотезы, то подходят ли  эти гипотезы к фактам? Должно  признать, продолжает он, что дело  обстоит иначе. В неорганической  химии путеводной нитью нам  служит изоморфизм, теория, основанная  на фактах, как хорошо известно, мало согласных с электрохимическими  теориями. В органической химии  ту же роль играет теория замещения и может быть будущее покажет, что оба воззрения более тесно связаны между собою, что они вытекают из одних и тех же причин и могут быть обобщены под одним и тем же названием. Пока же на основании превращения уксусной кислоты в хлоруксусную и альдегида в хлоральдегид (хлорал) и из того обстоятельства, что в этих случаях весь водород может быть замещен равным ему объемом хлора без изменения основного химического характера вещества, можно вывести заключение, что в органической химии существуют типы, которые сохраняются и тогда, когда на место водорода мы вводим

равные объемы хлора, брома и  йода. А это значит, что теория замещения покоится на фактах и при том наиболее блестящих в органической химии". Приводя эту выдержку в своем годовом отчете, Берцелиус замечает: "Дюма приготовил соединение, которому он придает рациональную формулу C4Cl6O3+H2O (Атомные веса современные; трихлоруксусная кислота рассматривается, как соединение ангидрида с водою.); это наблюдение он причисляет к faits les plus eclatants de la Chimie organique; это - основание его теории замещения, которая, по его мнению, опрокинет электрохимические теории, а между тем оказывается, что стоит только его формулу написать несколько иначе, чтобы иметь соединение щавелевой кислоты с соответственным хлоридом, C2Cl6+C2O4H2, который остается

соединенным со щавелевой кислотою и в кислоте, и в солях. Мы, следовательно, имеем дело с таким родом соединения, примеров которого известно много; многие, как простые, так и сложные радикалы обладают тем свойством, что их кислородсодержащая часть может вступать в соединение с основаниями и их лишаться, не теряя связи с хлорсодержащей частью. Это воззрение не приведено Дюма и не подвергнуто им опытной проверке, а между тем, если оно верно, то у нового учения, несовместимого, по Дюма, с господствовавшими до сих пор теоретическими представлениями, вырвана из под ног почва и оно должно пасть". Перечислив затем некоторые неорганические соединения, подобные, по его мнению, хлоруксусной кислоте (Между ними Берцелиусом приведен и хлор ангидрид хромовой кислоты - CrO2Cl2, который он считал за соединение надхлорного хрома (неизвестного и по сие время) с хромовым ангидридом: 3CrO2Cl2=CrCl6+2CrO3), Берцелиус продолжает: "хлоруксусная кислота Дюма, очевидно, принадлежит к этому классу соединений; в ней радикал углерода соединен и с кислородом, и с хлором. Она может быть, следовательно, щавелевой кислотою, в которой половина кислорода замещена хлором, или же соединением 1 атома (молекулы) щавелевой кислоты с 1 атомом (молекулой) полуторохлористого углерода - C2Cl6. Первое предположение не может быть принято, потому что оно допускает возможность замещения хлором 11/2, атомов кислорода (По Берцелиусу щавелевая кислота была C2O3.). Дюма же держится третьего представления, совершенно несовместимого с двумя вышеизло-женными, по которому хлор замещает не кислород, а электрополо-жительный водород, образуя углеводород C4Cl6, обладающий теми же свойствами сложного радикала, как и C4H6 или ацетил, и способный якобы с 3 атомами кислорода давать кислоту, тожественную по свойствам с уксусной, но, как видно из сравнения (их физических свойств), вполне от нее отличную". Насколько Берцелиус в то время был глубоко убежден в различной конституции уксусной и трихлоруксусной кислоты, видно хорошо из замечания, высказанного им в том же году ("Jahresb.", 19, 1840, 558) по поводу статьи Жерара ("Journ. f. pr. Ch.", XIV, 17): "Жерар, говорит он, высказал новый взгляд на состав спирта, эфира и их производных; он следующий: известное соединение хрома, кислорода и хлора имеет формулу = CrO2Cl2, хлор замещает в нем атом кислорода (Подразумевается Берцелиусом 1 атом кислорода хромового ангидрида - CrO3). Уксусная кислота C4H6+3O заключает в себе 2 атома (молекулы) щавелевой кислоты, из которых в одном весь кислород замещен водородом = C2O3+C2H6. И такой игрой в формулы заполнены 37 страниц. Но уже в следующем году Дюма, развивая далее идею типов, указал, что, говоря о тожестве свойств уксусной и трихлор-уксусной кислоты, он подразумевал тожество их химических свойств, наглядно выражающееся, напр., в аналогии распадения их под влиянием щелочей:

Информация о работе Якоб Берцелиус