Вихретоковый метод контроля

Автор работы: Пользователь скрыл имя, 15 Декабря 2014 в 13:02, реферат

Описание работы

Кажущееся неполным и расплывчатым понятие обретает чёткие формы, стоит только разложить его «по полочкам». Так, под словом «контроль» подразумевается «измерение значений рабочих параметров и свойств объекта и их проверка на соответствие допустимым величинам». «Неразрушающий» означает «не требующий демонтажа или остановки работы объекта», «не подразумевающий непосредственного вмешательства в исследуемую среду».

Файлы: 1 файл

Вихретоковый метод контроля.docx

— 251.39 Кб (Скачать файл)

 

 

 

 

 

 

 

 

 

                Вихретоковый метод контроля

 

 

 

 

 

 

 

 

 

 

 

 

Беспечук А.С.                                                                                                   ТМ-39

 

 

 

 

 

 

 

 

 

 

 

Кажущееся неполным и расплывчатым понятие обретает чёткие формы, стоит только разложить его «по полочкам». Так, под словом «контроль» подразумевается «измерение значений рабочих параметров и свойств объекта и их проверка на соответствие допустимым величинам». «Неразрушающий» означает «не требующий демонтажа или остановки работы объекта», «не подразумевающий непосредственного вмешательства в исследуемую среду». У нас на сайте имеется статья — контроль неразрушающий, в которой более подробно рассмотрен этот термин.

Методы, с помощью которых реализуется НК, называются методами неразрушающего контроля (далее МНК).

МНК, в основе которых лежат схожие физические принципы, условно группируются в виды и внутри них классифицируются по трём признакам:

  • по  характеру взаимодействия контролируемого объекта с физическим полем или веществом;

  • по первичному информативному параметру (характеристика проникающего вещества или физического поля, которая регистрируется после её взаимодействия с объектом контроля);

  • по способу, которым получают первичную информацию  (первичная информация – это регистрируемая после взаимодействия с контролируемым объектом совокупность характеристик проникающего вещества или физического поля).

Определение каждого метода контроля – всего их больше ста – можно найти в ГОСТ 18353-79 «Контроль неразрушающий. Классификация видов и методов» .

В данной статье МНК будут рассмотрены группами (в основу их объединения положена  принадлежность какому-либо виду или, как уже отмечалось ранее – общность реализуемых в ходе применения физических принципов). 

Магнитные методы неразрушающего контроля

Магнитные МНК основаны на анализе взаимодействия контролируемого объекта с магнитным полем  и применяются, как правило, для обнаружения внутренних и поверхностных дефектов объектов, изготовленных из ферромагнитных материалов.

К основным магнитным методам НК относят магнитопорошковый, феррозондовый, индукционный и магнитографический метод.  Самым распространённым и надёжным среди МНК своего вида является магнитопорошковый – основанный на возникновении неоднородности магнитного поля над местом дефекта.

 
Рис.1 – Магнитопорошковый МНК

Для реализации метода необходимо подготовить поверхность контролируемого объекта, намагнитить её и обработать магнитной суспензией. Металлические частицы, попавшие в неоднородное магнитное поле, возникшее над повреждением, притягиваются друг к другу и образуют цепочные структуры (рис. 1), выявляемые при осмотре деталей.

Оставшиеся не рассмотренными методы магнитного контроля аналогичны. Единственное отличие – вместо магнитного порошка и последующего визуального контроля используются катушка индуктивности (индукционный метод), магнитная лента и датчик, оснащённый магнитной головкой (магнитографический метод), феррозондовый датчик, регистрирующий поля рассеивания (феррозондовый метод).

Электрические методы неразрушающего контроля

Электрические МНК основаны на регистрации и анализе параметров электрического поля, которое взаимодействует с объектом контроля или возникает в нём в результате воздействия извне. Первичными информативными параметрами служат потенциал и ёмкость.

Рассмотрим суть электрических методов на примере электропотенциального метода, основанного на регистрации и анализе падения потенциала.

Если к телу из металла (оно изображено на рис. 2) приложить электрическое напряжение, то в нём возникнет электрическое поле, причём точки с одинаковым потенциалом образуют эквипотенциальные линии. В местах дефектов возникнет падение напряжения, которое можно измерить с помощью электродов и сделать выводы о характере и масштабе повреждений.

 
Рис.2 – Электропотенциальный МНК

Кроме электропотенциального метода, применяемого для контроля качества проводниковых материалов, используют следующие  электрические методы:

  • емкостной (контроль полупроводников и диэлектриков);

  • термоэлектрический (контроль химического состава материала);

  • электронной эмиссии;

  • электроискровой;

  • электростатического порошка (метод схож с магнитопорошковым).

Вихретоковые методы неразрушающего контроля

Вихретоковые МНК основаны на исследовании взаимодействия электромагнитного поля вихретокового преобразователя с наводимым в объекте контроля  электромагнитным полем вихревых токов, имеющих частоту до 1 млн Гц.

На практике данный метод используют для контроля объектов, которые изготовлены из электропроводящих материалов. С его помощью получают информацию о химическом составе и геометрическом размере изделия, о структуре материала, из которого объект изготовлен и обнаруживают дефекты, залегающие на поверхности и в подповерхностном слое (на глубине 2-3 мм). Типичный прибор используемый этим методом — вихретоковый дефектоскоп.

Принцип контроля заключается в следующем. С помощью катушки индуктивности 1 в объекте контроля 3 возбуждаются вихревые токи 2,  регистрируемые приёмным измерителем, в роли которого выступает та же самая или другая катушка. По интенсивности распределения токов в контролируемом объекте можно судить о размерах изделия, свойствах материала, наличии несплошностей.

 
Рис.3 – Вихретоковый МНК (прохождения)

На рисунке 3 изображен вихретоковый метод прохождения (возбуждающая катушка и приёмник расположены по двум сторонам объекта). К основным методам вихретокового контроля также относят

  • метод рассеянного излучения (регистрация рассеянных волн или частиц, отраженных от дефекта);

  • эхо-метод или метод отраженного излучения (регистрируются отраженные от дефекта поля и волны).

Радиоволновые методы неразрушающего контроля

Радиоволновые МНК основаны на регистрации  и анализе изменения параметров, которыми обладают взаимодействующие с объектом контроля электромагнитные волны радиодиапазона (их длина составляет от 0,01 до 1 м). Данные методы могут применяться для контроля объектов, изготовленных из материалов, не «заглушающих» радиоволны – диэлектриков (керамика), полупроводников, магнитодиэлектриков и тонкостенных объектов из металла.

Не будет ошибкой поставить в соответствие радиоволновым методам методы вихретоковые. Как и в случае вихретоковых МНК, аппаратура для реализации радиоволнового метода состоит из генератора 1 и приёмника волны 3.

Пример взаиморасположения генератора, объекта контроля и приёмника волн приведён на рисунке 4.

 
Рис.4 – Радиоволновой метод НМК (прохождения)

По характеру взаимодействия объекта с волной  различают радиоволновые методы прохождения, отражения и рассеивания; по первичному информативному параметру – фазовые, геометрические, амплитудно-фазовые и поляризационные МНК.

Тепловые методы неразрушающего контроля

Тепловые МНК в качестве пробной (несущей информацию) энергии используют распространяющуюся в объекте контроля тепловую энергию. Температурное поле напрямую зависит от происходящих в объекте процессах теплопередачи, особенности которых зависят от наличия дефектов (как внутренних, так и наружных).

Основной информативный параметр тепловых МНК – разность температур между бездефектными и дефектными областями объекта. Температура может измеряться контактным и бесконтактным методом.

В зависимости от характера взаимодействия контролируемого объекта и тепловой энергии различают активный (рис.5) и пассивный методы тепловых МНК.

Активный метод заключается в следующем: контролируемый объект 6 с помощью внешнего источника 1 охлаждают или нагревают, а затем с помощью устройства контроля 5 измеряют тепловой поток температуру на его поверхности. Участкам повышенного или пониженного нагрева соответствуют дефекты 4.

 
Рис.5 – Активный метод теплового НК

При использовании пассивного метода (его называют методом собственного излучения) тепловые источники не используют. Вместо этого регистрируют тепловые потоки работающих объектов, ставя в соответствие местам повышенного нагрева неисправности и дефекты.

Тепловые методы широко используются не только при контроле технологических процессов и качества изделий; также их применяют в медицине, астрономии, при мониторинге (лесных пожаров, например).

Оптические методы неразрушающего контроля

Оптические МНК основаны на регистрации и анализе параметров, присущих взаимодействующему с объектом оптическому излучению (к нему относятся электромагнитные волны длиной от 10-5 до 10-3 мкм).

С помощью оптических МНК обнаруживают пустоты, поры, расслоения, трещины, инородные включения, геометрические отклонения и внутренние напряжения в объектах контроля. Информационными параметрами методов являются интегральные и спектральные фотометрические характеристики излучения.

Наружный оптический контроль может применяться относительно объектов из любых материалов. Обнаружение внутренних дефектов (неоднородностей, напряжений) возможно только применительно к прозрачным объектам. Для контроля диаметров и толщины используют оптические  методы, основанные на явлении дифракции, для контроля шероховатости и сферичности – на явлении интерференции.

Оптический контроль может выполняться методами собственного (а), отраженного (б) и  прошедшего (в) излучения.

 
Рис. 6 – Схемы испытаний оптическими МНК

Приёмное устройство может регистрировать следующие информативные параметры – амплитуду, степень поляризации и фазу волны, время её прохождения через объект, частоту или частотный спектр излучения.

Радиационные методы неразрушающего контроля

Радиационные МНК основаны на регистрации взаимодействующего с объектом проникающего ионизирующего излучения и его последующем анализе. В зависимости от вида ионизирующего излучения, слово «радиационные» в наименовании методов может заменяться на «рентгеновские», «нейтронные» и другие.

Чаще всего для контроля используется гамма- и рентгеновское излучение, позволяющее выявить едва ли не любой дефект (как внутренний, так и поверхностный).

Схема применения радиационного контроля методом прохождения (стоит отметить, что метод отражения практически не используется) приведена на рисунке 7.

Источник 1 излучает поток, проходящий сквозь контролируемый объект 2. Излучение улавливается приёмником 3 и с помощью преобразователя 4 преобразуется в конечный результат.

 
Рис. 7 – Схема применения радиационного контроля (метод прохождения)

В зависимости от того, какой приёмник излучения 3 используется (сцинтилляционный счетчик фотонов и частиц, рентгеновская плёнка или флюоресцирующий экран), различают  радиометрический, радиографический и радиоскопический методы.

Первичным информативным параметром выступает плотность потока излучения, возрастающая в местах дефектов.

Акустические методы неразрушающего контроля

Акустические МНК основаны на регистрации и анализе параметров упругих волн, которые возбуждаются и/или  возникают в объекте контроля. При использовании волн ультразвукового диапазона допустима замена названия группы методов на «ультразвуковые».

Информация о работе Вихретоковый метод контроля