Углеродные нанотрубки

Автор работы: Пользователь скрыл имя, 23 Июня 2013 в 16:58, реферат

Описание работы

Углеродные нанотрубки - протяжённые структуры, состоящие из свёрнутых гексагональных сеток с атомами углерода в узлах, открытые в 1991 году японским исследователем Иджимой.
Первая нанотрубка была получена путём распыления графита в электрической дуге. Измерения, выполненные с помощью электронного микроскопа, показали, что диаметр таких нитей не превышает нескольких нанометров, а длина от одного до нескольких микрон.

Файлы: 1 файл

Нанотрубки.docx

— 233.28 Кб (Скачать файл)

Определение.

Углеродные нанотрубки - протяжённые структуры, состоящие из свёрнутых гексагональных сеток с атомами углерода в узлах, открытые в 1991 году японским исследователем Иджимой.

Первая нанотрубка была получена путём распыления графита в электрической дуге. Измерения, выполненные с помощью электронного микроскопа, показали, что диаметр таких нитей не превышает нескольких нанометров, а длина от одного до нескольких микрон.

 

Рис.1. Так выглядят нанотрубки под электронным микроскопом

 

Разрезав нанотрубку вдоль продольной оси, было обнаружено, что она состоит из одного или нескольких слоёв, каждый из которых представляет гексагональную сетку графита, основу которой составляют шестиугольники с расположенными в вершинах углов атомами углерода. Во всех случаях расстояние между слоями равно 0,34 нм, то есть такое же, как и между слоями в кристаллическом графите. Верхние концы трубочек закрыты полусферическими крышечками, каждый слой которых составлен из шести- и пятиугольников, напоминающих структуру половинки молекулы фуллерена.

Нанотрубки могут быть большие и маленькие, однослойные и многослойные, прямые (Рис.2а, б) и спиральные (Рис.2в).

 

Рис.2. Примеры нанотрубок

 

 

Структура.

Идеальная нанотрубка – это цилиндр, полученный при свёртывании плоской гексагональной сетки графита без швов. Взаимная ориентация гексагональной сетки графита и продольной оси нанотрубки определяет очень важную структурную характеристику нанотрубки – хиральность. Хиральность - это стереохимическое свойство, означающее несовместимость объекта со своим зеркальным отображением. Хиральность характеризуется 2 целыми числами (m, n), которые указывают местонахождение того шестиугольника сетки, который в результате свёртывания должен совпасть с шестиугольником, находящимся в начале координат. Хиральность нанотрубки может быть также однозначно определена углом α, образованным направлением сворачивания нанотрубки и направлением, в котором соседние шестиугольники имеют общую сторону.  Имеется очень много вариантов свёртывания нанотрубок, но среди них выделяются те, в результате реализации которых не происходит искажения структуры гексагональной сетки. Этим направлениям отвечают углы α=0 и α=300, что соответствует хиральности (m, 0) и (2n, n).

Индексы хиральности однослойной нанотрубки определяют её диаметр D:

D= m2+n2-mn * 3do/¦Р

где do=0,142 нм – расстояние между атомами углерода в гексагональной сетке графита. Приведённое выше выражение позволяет по диаметру нанотрубки определить её хиральность.

Среди однослойных нанотрубок особый интерес представляют нанотрубки с хиральностью (10, 10). Проведённые расчёты показали, что нанотрубки с подобной структурой должны обладать металлическим типом проводимости, а также иметь повышенную стабильность и устойчивость по сравнению с трубками других хиральностей. Справедливость этих утверждений была экспериментально подтверждена в 1996 году, когда впервые был осуществлён синтез нанотрубок с D=1,36 нм, что соответствует хиральности (10, 10).

Получение.

В настоящее время наиболее распространённым является метод термического распыления графитовых электродов в  плазме дугового разряда. Процесс синтеза  осуществляется в камере, заполненной  гелием под давлением около 500 торр (Торр - внесистемная единица давления, равная EQ \f (1;760) части физической (нормальной) атмосферы, то есть 101325:760 = 133,322 (н/м2, или паскаля)Названа в честь Э. Торричелли. Обозначения: русское - торр, международное - Torr. В научной литературе на русском языке чаще применяется равная ей единица - миллиметр ртутного столба (мм рт. ст.). При горении плазмы происходит интенсивное термическое испарение анода, при этом на торцевой поверхности катода образуется осадок, в котором формируются нанотрубки углерода.

Максимальное количество нанотрубок образуется тогда, когда ток плазмы минимален и его плотность около 100 А/см2. В экспериментальных установках напряжение между электродами составляет около 15-25 В, ток разряда несколько десятков ампер, расстояние между концами графитовых электродов 1-2 мм. В процессе синтеза около 90% массы анода осаждается на катоде.

Образующиеся многочисленные нанотрубки имеют длину около 40 мкм. Они нарастают на катоде перпендикулярно плоской поверхности его торца и собраны в цилиндрические пучки диаметром около 50 мкм. Пучки нанотрубок регулярно покрывают поверхность катода, образую сотовую структуру.

Рис.1. Выращенные на катоде нанотрубки

Содержание нанотрубок в углеродном осадке около 60%.

Для разделения компонентов  полученный осадок помещают в метанол  и обрабатывают ультразвуком. В результате получается суспензия, которая после  добавления воды подвергается разделению в центрифуге. Крупные частицы  прилипают к стенкам центрифуги, а нанотрубки остаются плавающими в суспензии. Затем нанотрубки промывают в азотной кислоте и просушивают в газообразном потоке кислорода и водорода в соотношении 1:4 при температуре 750C в течение 5 минут.

В результате такой обработки  получается лёгкий пористый материал, состоящий из многочисленных нанотрубок со средним диаметром 20 нм и длиной 10 мкм.

Пока максимальная достигнутая  длина нановолокна - 1 см. В связи со сложностью получения нанотрубок, 1 грамм стоит несколько сот долларов США.

 

Свойства.

Механические.

 

Нанотрубки, как было сказано, являются на редкость прочным материалом, как на растяжение, так и на изгиб. Более того, под действием механических напряжений, превышающих критические, нанотрубки не "рвутся", а перестраиваются.

Основываясь на таком свойстве нанотрубок как высокая прочность, можно утверждать, что они являются наилучшим материалом для троса космического лифта на данный момент. Как показывают результаты экспериментов и численного моделирования, модуль Юнга однослойной нанотрубки достигает величин порядка 1-5 ТПа, что на порядок больше, чем у стали.

Приведённый ниже график показывает сравнение однослойной нанотрубки (Single Wall NanoTube) и высокопрочной стали.

1 - Трос космического лифта  по подсчётам должен выдерживать  механическое напряжение 62,5 ГПа

2 - Диаграмма растяжения (зависимость механического напряжения σ от относительного удленения ε)

Чтобы продемонстрировать существенное различие между самыми прочными на текущий момент материалами и  углеродными нанотрубками, проведём следующий мысленный эксперимент. Представим, что, как это предполагалось ранее, тросом для космического лифта будет служить некая клиновидная однородная структура, состоящая из самых прочных на сегодняшний день материалов, то диаметр троса у GEO (geostationary Earth orbit) будет около 2 км и сузится до 1 мм у поверхности Земли. В этом случае общая масса составит 60*1010 тонн. Если бы в качестве материала использовались углеродные нанотрубки, то диаметр троса у GEO составил 0,26 мм и 0,15 мм у поверхности Земли, в связи с чем общая масса была 9,2 тонн. Как видно из вышеуказанных фактов, углеродное нановолокно – это как раз тот материал, который необходим при постройке троса, реальный диаметр которого составит около 0,75 м, чтобы выдержать также электромагнитную систему, использующуюся для движения кабины космического лифта.

 

Электрические.

 

Вследствие малых размеров углеродных нанотрубок только в 1996 году удалось непосредственно измерить их удельное электрическое сопротивление четырёхконтактным способом.

На полированную поверхность  оксида кремния в вакууме наносили золотые полоски. В промежуток между  ними напыляли нанотрубки длиной 2-3 мкм. Затем на одну из выбранных для измерения нанотрубок наносили 4 вольфрамовых проводника толщиной 80 нм. Каждый из вольфрамовых проводников имел контакт с одной из золотых полосок. Расстояние между контактами на нанотрубке составляло от 0,3 до 1 мкм. Результаты прямого измерения показали, что удельное сопротивление нанотрубок может изменяться в значительных пределах – от 5,1*10-6 до 0,8 Ом/см. Минимальное удельное сопротивление на порядок ниже, чем у графита. Большая часть нанотрубок обладает металлической проводимостью, а меньшая проявляет свойства полупроводника с шириной запрещённой зоны от 0,1 до 0,3 эВ.

Французскими и российскими  исследователями (из ИПТМ РАН, Черноголовка) было открыто ещё одно свойство нанотрубок, как сверхпроводимость. Они проводили измерения вольт-амперных характеристик отдельной однослойной нанотрубки диаметром ~1нм, свернутого в жгут большого числа однослойных нанотрубок, а также индивидуальных многослойных нанотрубок. Сверхпроводящий ток при температуре, близкой к 4К, наблюдался между двумя сверхпроводящими металлическими контактами. Особенности переноса заряда в нанотрубке существенно отличаются от тех, которые присущи обычным, трехмерным проводникам и, по-видимому, объясняются одномерным характером переноса.

Также де Гиром из Университета Лозанны (Швейцария) было обнаружено интересное свойство: резкое (около двух порядков величины) изменение проводимости при небольшом, на 5-10о, изгибе однослойной нанотрубки. Это свойство может расширить область применения нанотрубок. С одной стороны, нанотрубка оказывается готовым высокочувствительным преобразователем механических колебаний в электрический сигнал и обратно (фактически это - телефонная трубка длиной в несколько микрон и диаметром около нанометра), а, с другой стороны, это - практически готовый датчик мельчайших деформаций. Такой датчик мог бы найти применение в устройствах, контролирующих состояние механических узлов и деталей, от которых зависит безопасность людей, например, пассажиров поездов и самолетов, персонала атомных и тепловых электростанций и т. п.

 

 

 

 

 

 

Капиллярные.

 

Как показали эксперименты, открытая нанотрубка обладает капиллярными свойствами. Чтобы открыть нанотрубку, надо удалить верхнюю часть – крышечку. Один из способов удаления заключается в отжиге нанотрубок при температуре 850C в течение нескольких часов в потоке углекислого газа. В результате окисления около 10% всех нанотрубок оказываются открытыми. Другой способ разрушения закрытых концов нанотрубок – выдержка в концентрированной азотной кислоте в течение 4,5 часов при температуре 2400 C. В результате такой обработки 80% нанотрубок становятся открытыми.

Первые исследования капиллярных  явлений показали, что жидкость проникает  внутрь канала нанотрубки, если её поверхностное натяжение не выше 200 мН/м. Поэтому для ввода каких-либо веществ внутрь нанотрубок используют растворители, имеющие низкое поверхностное натяжение. Так, например, для ввода в канал нанотрубки некоторых металлов используют концентрированную азотную кислоту, поверхностное натяжение которой невелико (43 мН/м). Затем проводят отжиг при 4000 C в течение 4 часов в атмосфере водорода, что приводит к восстановлению металла. Таким образом были получены нанотрубки, содержащие никель, кобальт и железо.

Наряду с металлами  углеродные нанотрубки могут заполняться газообразными веществами, например водородом в молекулярном виде. Эта способность имеет практическое значение, ибо открывает возможность безопасного хранения водорода, который можно использовать в качестве экологически чистого топлива в двигателях внутреннего сгорания. Также ученые смогли поместить внутрь нанотрубки целую цепочку из фуллеренов с уже внедренными в них атомами гадолиния (см. Рис.1).

Рис.1. Gd@C60@SWNT, т.е. "Gd внутри C60 внутри однослойной нанотрубки (Single Wall NanoTube)"

 

Применение.

Приборостроение.

 

Ученые создали первый наномасштабный мотор на основе многостенных нанотрубок. Углеродная нанотрубка выполняет своего рода роль оси, на которой монтируется ротор. Максимальные размеры наномотора порядка 500 нм, ротор имеет длину от 100 до 300 нм, а вот нанотрубка-ось имеет в поперечнике размер всего несколько атомов, т.е. примерно 5-10 нм.

На основе нанотрубки возможно создание микроскопических весов. Для этого требуется преобразование электрических колебаний в механические. Для возбуждения колебаний нанотрубки под действием электрического поля ее закрепляют на одном из двух электродов, под углом ко второму электроду. При подаче на электроды электрического напряжения трубка заряжается и за счет электростатического притяжения отклоняется ко второму электроду. Если на электроды подать переменное напряжение, частота которого совпадает с частотой собственных колебаний нанотрубки, зависящих от ее толщины и длины, возникнут механические колебания нанотрубки. Определив (спектроскопическими методами) частоту её собственных колебаний и прикрепив к ней исследуемый образец, можно определить частоту колебаний нагруженной нанотрубки. Эта частота будет меньше частоты колебаний свободной нанотрубки: ведь масса системы увеличилась, а жесткость осталась прежней. Например, в ходе одного из экспериментов было обнаружено, что груз, уменьшающий частоту колебаний с 3.28 МГц до 968 кГц, имеет массу 22 8 фг (фемтограмм, т.е. 10-15 грамм).

Рис.1 Микроскопические весы нананотрубках

 

Другой пример, когда нанотрубка является частью физического прибора - это "насаживание" ее на острие сканирующего туннельного или атомного силового микроскопа. Обычно такое острие представляет собой остро заточенную вольфрамовую иглу, но по атомным меркам такая заточка все равно достаточно грубая. Нанотрубка же представляет собой идеальную иглу диаметром порядка нескольких атомов. Прикладывая определенное напряжение, можно подхватывать атомы и целые молекулы, находящиеся на подложке непосредственно под иглой, и переносить их с места на место.

наноэлектроника

Существует также применение в наноэлектронике - создание полупроводниковых гетероструктур, т.е. структур типа металл/полупроводник или стык двух разных полупроводников. В процессе роста нанотрубки создаётся в ней структурный дефект (заменяется один из углеродных шестиугольников пятиугольником и семиугольником (см. рис. 1). Тогда одна часть нанотрубки будет металлической, а другая – полупроводником.

Рис.1. Влияние дефекта  семиугольник-пятиугольник на геометрию  нанотрубки (а) и энергию подвижных электронов (б)

Необычные электрические  свойства нанотрубок делают их одним из основных материалов наноэлектроники. Уже сейчас созданы опытные образцы полевых транзисторов (см. Рис.2) на основе одной нанотрубки: прикладывая запирающее напряжение в несколько вольт, ученые научились изменять проводимость однослойных нанотрубок на 5 порядков.

Рис.2. первый транзистор p типа на основе углеродных нанотрубок

 

На кремниевой подложке, покрытой изолирующим оксидным слоем  толщиной 300 нм, формировали параллельные платиновые полоски шириной по 200 нм, разнесенные на расстояние около 600 нм между их осями. Нанотрубку диаметром 1.4 нм и длиной около 1 мкм укладывали поверх полос так, чтобы она перемыкала две или три Pt-полоски, образуя с ними туннельные контакты. Это позволяло носителям заряда (дырки - в углеродной нанотрубке) участвовать в создании тока между соседними Pt-электродами, служащими истоком и стоком в полученном таким способом полевом транзисторе с изолированным затвором, роль которого играла Si-подложка.

Информация о работе Углеродные нанотрубки