Свойства S, P, D элементов, имеющих биологическое значение

Автор работы: Пользователь скрыл имя, 15 Апреля 2014 в 13:17, реферат

Описание работы

Биологические функции s–элементов очень разнообразны: активация ферментов, участие в процессах свертывания крови, в различных реакциях организма, связанных с изменением проницаемости мембран по отношению к ионам калия, натрия и кальция, участие в образовании мембранного потенциала, в запуске внутриклеточных процессов, таких как обмен веществ, рост, развитие, сокращение, деление и секреция. Обеспечивают перенос в клетке информации. Чувствительность клеток к данным ионам обеспечивается разностью их содержания вне и внутри клетки, градиентом концентрации (ионной асимметрией). Старение – понижение градиента концентрации, смерть – выравнивание концентрации вне и внутри клетки. Градиент концентрации обеспечивается связыванием свободных ионов клетки специфическими белками. Одним из немногих универсальных регуляторов жизнедеятельности клеток являются ионы кальция. Градиент концентраций Са2+ между цитоплазмой и средой на уровне 4 порядков и обеспечивается связыванием Са2+ в хелатное соединение специфическими белками. Кальмодулин – один из наиболее изученных кальций связывающих белков, широко распространенных и встречается в клетках животных, растений и грибов. Этот белок способен регулировать большое число (более 30 описанных в настоящее время) различных процессов, происходящих в клетке.

Файлы: 1 файл

Джамшед Холов.docx

— 100.07 Кб (Скачать файл)

При хранении водных растворов солей железа(II) наблюдается окисление железа(II) до железа(III):

4FeCl2 + O2 + 2H2O → 4Fe(OH)Cl2.

Из солей железа(II) в водных растворах устойчива соль Мора — двойной сульфат аммония и железа(II) (NH4)2Fe(SO4)2·6Н2O.

Железо(III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов, например, KFe(SO4)2 — железокалиевые квасцы, (NH4)Fe(SO4)2 — железоаммонийные квасцы и т. д.

При действии газообразного хлора или озона на щелочные растворы соединений железа(III) образуются соединения железа(VI) — ферраты, например, феррат(VI) калия K2FeO4. Имеются сообщения о получении под действием сильных окислителей соединений железа(VIII).

Для обнаружения в растворе соединений железа(III) используют качественную реакцию ионов Fe3+ с тиоцианат-ионами SCN−. При взаимодействии ионов Fe3+ с анионами SCN− образуется ярко-красный роданид железа Fe(SCN)3. Другим реактивом на ионы Fe3+ служит гексацианоферрат(II) калия K4[Fe(CN)6] (жёлтая кровяная соль). При взаимодействии ионов Fe3+ и [Fe(CN)6]4− выпадает ярко-синий осадок берлинской лазури:

4K4[Fe(CN)6] + 4Fe3+ → 4KFeIII[FeII(CN)6]↓ + 12K+.

Реактивом на ионы Fe2+ в растворе может служить гексацианоферрат(III) калия K3[Fe(CN)6] (красная кровяная соль). При взаимодействии ионов Fe2+ и [Fe(CN)6]3− выпадает осадок турнбулевой сини:

3K3[Fe(CN)6] + 3Fe2+ → 3KFeII[FeIII(CN)6]↓ + 6K+.

Интересно, что берлинская лазурь и турнбулева синь — две формы одного и того же вещества, так как в растворе устанавливается равновесие:

KFeIII[FeII(CN)6] ↔ KFeII[FeIII(CN)6].

    • Применение

Железо — один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства.

Железо является основным компонентом сталей и чугунов — важнейших конструкционных материалов.

Железо может входить в состав сплавов на основе других металлов — например, никелевых.

Магнитная окись железа (магнетит) — важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.

Ультрадисперсный порошок магнетита используется в черно-белых лазерных принтерах в качестве тонера.

Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.

Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат.

Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.

Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах.

Водные растворы хлоридов двухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.

 

  • Биологическое значение

В живых организмах железо является важным микроэлементом, катализирующим процессы обмена кислородом (дыхания). В организме взрослого человека содержится около 3,5 грамма железа (около 0,02 %), из которых 78 %[источник?] являются главным действующим элементом гемоглобина крови, остальное входит в состав ферментов других клеток, катализируя процессы дыхания в клетках. Недостаток железа проявляется как болезнь организма (хлороз у растений и анемия у животных).

Обычно железо входит в ферменты в виде комплекса, называемого гемом. В частности, этот комплекс присутствует в гемоглобине — важнейшем белке, обеспечивающем транспорт кислорода с кровью ко всем органам человека и животных. И именно он окрашивает кровь в характерный красный цвет.

Комплексы железа, отличные от гема, встречаются, например, в ферменте метан-моноксигеназе, окисляющем метан в метанол, в важном ферменте рибонуклеотид-редуктазе, который участвует в синтезе ДНК.

Неорганические соединения железа встречается в некоторых бактериях, иногда используется ими для связывания азота воздуха.

В организм животных и человека железо поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, свёкла). Интересно, что некогда шпинат ошибочно был внесён в этот список (из-за опечатки в результатах анализа — был потерян «лишний» ноль после запятой).

Суточная потребность человека в железе следующая[15]: дети — от 4 до 18 мг, взрослые мужчины — 10 мг, взрослые женщины — 18 мг, беременные женщины во второй половине беременности — 33 мг. У женщин потребность несколько выше, чем у мужчин. Как правило, железа, поступающего с пищей, вполне достаточно, но в некоторых специальных случаях (анемия, а также при донорстве крови) необходимо применять железосодержащие препараты и пищевые добавки (гематоген, ферроплекс). Суточная потребность в железе мала и ее легко удовлетворить. Однако у ребенка, которого кормят грудью, нередко возникает дефицит железа. В организме легко восстанавливается равновесие между поступлением и выведением железа, и временный дефицит его легко восполняется за счет имеющихся запасов. Потребность в железе значительно возрастает при анемии, вызванной, например, такими паразитарными инвазиями, как малярия и анкилостомоз, которые очень широко распространены в тропических странах.

Содержание железа в воде больше 1—2 мг/л значительно ухудшает её органолептические свойства, придавая ей неприятный вяжущий вкус, и делает воду малопригодной для использования, вызывает у человека аллергические реакции, может стать причиной болезни крови и печени (гемохроматоз). ПДК железа в воде 0,3 мг/л.

Избыточная доза железа (200 мг и выше) может оказывать токсическое действие. Передозировка железа угнетает антиоксидантную систему организма, поэтому употреблять препараты железа здоровым людям не рекомендуется

.2.     Кобальт

    • Нахождение и распространение в природе

Распространение в природе. Содержание кобальта в литосфере 1,8·10-3% по массе. В земной коре он мигрирует в магмах, горячих и холодных водах. При магматической дифференциации кобальт накапливается главным образом в верхней мантии: его среднее содержание в ультраосновных породах 2·10-2%. С магматическими процессами связано образование так называемых ликвационных месторождений кобальтовых руд. Концентрируясь из горячих подземных вод, кобальт образует гидротермальные месторождения; в них Со связан с Ni, As, S, Cu. Известно около 30 минералов кобальта (см. Кобальтовые руды).

В биосфере кобальт преимущественно рассеивается, однако на участках, где есть растения — концентраторы кобальта, образуются кобальтовые месторождения. В верхней части земной коры наблюдается резкая дифференциация кобальта — в глинах и сланцах в среднем содержится 2·10-3% кобальта, в песчаниках 3·10-5, в известняках 1·10-5. Наиболее бедны кобальтом песчаные почвы лесных районов. В поверхностных водах кобальта мало, в Мировом океане его лишь 5·10-8%. Будучи слабым водным мигрантом, кобальт легко переходит в осадки, адсорбируясь гидроокисями марганца, глинами и др. высокодисперсными минералами.

 

    • Получение

Минералы кобальта редки и не образуют значительных рудных скоплений. Главным источником промышленного получения кобальта служат руды никеля, содержащие кобальт как примесь. Переработка этих руд весьма сложна, и её способ зависит от состава руды. В конечном итоге получают раствор хлоридов кобальта и никеля, содержащий примеси Cu2+, Pb2+, Bi3+. Действием H2S осаждают сульфиды Cu, Pb, Bi, после чего пропусканием хлора переводят Fe (II) в Fe (lll) и добавлением СаСО3 осаждают Fe (OH)3 и CaHAsO4. От никеля кобальт отделяют по реакции: 2CoCl2+NaCIO+4NaOH+H2O = 2Co (OH)3¯+5NaCI. Почти весь никель остаётся в растворе. Чёрный осадок Со (ОН)3 прокаливают для удаления воды; полученный окисел Co3O4 восстанавливают водородом или углеродом. Металлический кобальт, содержащий до 2—3% примесей (Ni, Fе, Cu и др.), может быть очищен электролизом.

 

    • Физические и химические свойства

Кобальт — твердый металл, существующий в двух модификациях. При температурах от комнатной до 427 °C устойчива α-модификация. При температурах от 427 °C до температуры плавления (1494 °C) устойчива β-модификация кобальта (решётка кубическая гранецентрированная). Кобальт — ферромагнетик, точка Кюри 1121 °C. Желтоватый оттенок ему придает тонкий слой оксидов.

Оксиды

На воздухе кобальт окисляется при температуре выше 300 °C.

Устойчивый при комнатной температуре оксид кобальта представляет собой сложный оксид Co3O4, имеющий структуру шпинели, в кристаллической структуре которого одна часть узлов занята ионами Co2+, а другая — ионами Co3+; разлагается с образованием CoO выше 900 °C.

При высоких температурах можно получить α-форму или β-форму оксида CoO.

Все оксиды кобальта восстанавливаются водородом. Со3О4 + 4Н2 → 3Со + 4Н2О.

Оксид кобальта (III) можно получить, прокаливая соединения кобальта (II), например: 2Со(ОН)2 + O2 → Co2O3 + Н2O.

Другие соединения

При нагревании, кобальт реагирует с галогенами, причём соединения кобальта (III) образуются только с фтором. 2Co + 3F2 → CoF3, но, Co + Cl2 → CoCl2

С серой кобальт образует 2 различных модификации CoS. Серебристо-серую α-форму (при сплавлении порошков) и чёрную β-форму (выпадает в осадок из растворов).

При нагревании CoS в атмосфере сероводорода получается сложный сульфид Со9S8

С другими окисляющими элементами, такими как углерод, фосфор, азот, селен, кремний, бор.кобальт тоже образует сложные соединения, являющиеся смесями где присутствует кобальт со степенями окисления 1, 2, 3.

Кобальт способен растворять водород, не образуя химических соединений. Косвенным путем синтезированы два стехиометрических гидрида кобальта СоН2 и СоН.

Растворы солей кобальта CoSO4, CoCl2, Со(NO3)2 придают воде бледно-розовую окраску. Растворы солей кобальта в спиртах темно-синие. Многие соли кобальта нерастворимы.

Кобальт создаёт комплексные соединения. Чаще всего на основе аммиака.

Наиболее устойчивыми комплексами являются лутеосоли [Co(NH3)6]3+ жёлтого цвета и розеосоли [Co(NH3)5H2O]3+ красного или розового цвета.

Также кобальт создаёт комплексы на основе CN−, NO2− и многих других.

Хлорид кобальта

Ионные комплексы кобальта

    • Применение

Легирование кобальтом стали повышает её жаропрочность, улучшает механические свойства. Из сплавов с применением кобальта создают обрабатывающий инструмент: свёрла, резцы, и.т.п.

Магнитные свойства сплавов кобальта находят применение в аппаратуре магнитной записи, а также сердечниках электромоторов и трансформаторов.

Для изготовления постоянных магнитов иногда применяется сплав, содержащий около 50 % кобальта, а также ванадий или хром.

Кобальт применяется как катализатор химических реакций.

Кобальтат лития применяется в качестве высокоэффективного положительного электрода для производства литиевых аккумуляторов.

Силицид кобальта отличный термоэлектрический материал и позволяет производить термоэлектрогенераторы с высоким КПД.

Радиоактивный кобальт-60 (период полураспада 5,271 года) применяется в гамма-дефектоскопии и медицине.

60Со используется  в качестве топлива в радиоизотопных  источниках энергии.

 

    • Биологическая роль

Кобальт, один из микроэлементов, жизненно важных организму. Он входит в состав витамина В12 (кобаламин). Кобальт задействован при кроветворении, функциях нервной системы и печени, ферментативных реакциях. Потребность человека в кобальте 0,007-0,015 мг, ежедневно. В теле человека содержится 0,2 мг кобальта на каждый килограмм массы человека. При отсутствии кобальта развивается акобальтоз.

 

3.     Медь

      1. Нахождение и распространение в природе

Содержание меди в земной коре (4,7.5,5).10-3% по массе. Для меди характерны месторождения гидротермального происхождения. В морской воде содержание меди 3.10-7% по массе, в речной —1.10-7%; ионы меди, поступающие в бассейны морей и океанов, сорбируются донными отложениями, поэтому содержание меди в них достигает 5,7.10-3%. Ионы меди участвуют во многих физиол. процессах, среднее содержание меди в живых организмах 2.10-4% по массе, в крови человека ок. 0,001 мг/л.

В земной коре медь встречается в осн. в виде соед. с S (св. 90% мировых запасов и добычи меди) и в виде кислородсодержащих соединений. Среди многочисл. минералов меди (более 250) наиб.важны: халькопирит CuFeS2, ковеллинCuS, халькозин Cu2S, борнит Cu5FeS4, куприт Сu2О, малахит CuCO3.Cu(OH)2, хризоколла CuSiO3.2H2O др. Редко встречается самородная медь. Медные руды по минера-логич. составу м. б. подразделены на сульфидные, оксидные и смешанные (30-40% Си в форме оксидных минералов). По текстурным особенностям различают медные руды массивные, или сплошные (колчеданные, медно-никелевые, по-лиметаллич.), и прожилково-вкрапленные (медистые песчаники и сланцы). Медные руды полиметаллич., помимо меди, они содержат Fe, Zn, Pb, Ni, Au, Ag, Mo, Re, Se, Fe, платиновые металлы и др. Осн. мировые запасы меди (кроме СССР) сосредоточены в Сев. Америке (США, Канада, Мексика)-32%, Юж. Америке (Чили, Перу)-30%, Африке (Замбия, Заир)-15%. Мировые запасы медных руд (без СССР) составляют 847,6 млн. т, в т. ч. доказанные 447,4 млн. т.

 

    • Получение

Осн. сырье для получения меди-сульфидные, реже-смешанные руды. Большое значение приобретает переработка вторичного сырья, из к-рого в ряде развитых стран получают до 30-60% производимой меди. В связи с невысоким содержанием меди в рудах (0,5-1,2%) и их много-компонентностью руды подвергают флотационному обогащению, получая попутно, помимо медного, и др. концентраты, напр. цинковый, никелевый, молибденовый, пиритный, свинцовый. Содержание меди в медных концентратах достигает 18-45%.

Осн. кол-во меди (85-88%) получают по пирометаллургич. схемам, к-рые, как правило, включают след.последовательные стадии: обжиг концентрата, плавку, конвертирование, рафинирование. Обжиг проводят при переработке высокосернистых и полиметаллич. концентратов. При обжиге удаляют избыточное кол-во S в форме газов, содержащих 5-8% SO2 и используемых для произ-ва H2SO4, и переводят часть примесей (Fe, Zn, As, Pb и др.) в формы, переходящие при послед.плавке в шлак. Обжиг проводят в печах "кипящего слоя" с применением дутья, обогащенного О2 (24-26% О2), без затрат углеродистого топлива. Продукт обжига - огарок -плавят в печах отражательного типа, реже - электропечах. Богатые медью руды плавили в шахтных печах, в настоящее время этот способ имеет подчиненное значение. Перечисл. способы плавки связаны с расходом (10-18% от массы шихты) углеродистого топлива (прир. газ, мазут, кокс) или электроэнергии (350-450 кВт.ч на 1 т шихты).

Информация о работе Свойства S, P, D элементов, имеющих биологическое значение