Радиоактивность, виды, опасность для живых систем

Автор работы: Пользователь скрыл имя, 16 Июня 2014 в 13:58, реферат

Описание работы

С давних времен человек совершенствовал себя. Постоянная нехватка энергии заставляла человека искать и находить новые источники, внедрять их не заботясь о будущем. Таких примеров множество: паровой двигатель побудил человека к созданию огромных фабрик, что за собой повлекло мгновенное ухудшение экологи в городах. Другим примером служит создание каскадов гидроэлектростанций, затопивших огромные территории и изменившие до неузнаваемости экосистемы отдельных районов. В порыве за открытиями в конце XIX в. было открыто явление радиоактивности. Именно это достижение поставило существование всей планеты под угрозу. За 100 с лишним лет человек наделал столько глупостей, сколько не делал за все свое существование. Давно уже прошла Холодная война, мы уже пережили Чернобыль и многие засекреченные аварии на полигонах, однако проблема радиационной угрозы никуда не ушла и по сей день служит главной угрозой биосфере.

Содержание работы

Введение…………………………………………………………………………...3
Глава I. Что такое «радиация» и «радиоактивность»…………………………...5
Виды радиоактивности……………………………………………...6
Источники радиоактивного излучения…………………………….9
Глава II. Атомные электростанции……………………………………………..11
2.1. Чернобыльская АЭС……………………………………...………….11
2.2. Японская АЭС «Фукусима - 1»……………………………………..12
2.3. Нововоронежская АЭС………………………………………………13
Глава III. Опасность радиоактивного излучения……………………………...14
3.1. Влияние радиации на человеческий организм……………………..15
Заключение……………………………………………………………………….19
Литература………………………………………………………………………

Файлы: 1 файл

Реферат по ХОС.doc

— 114.00 Кб (Скачать файл)

Министерство образования и науки РФ

Государственное образовательное учреждение

Высшего профессионального образования

Бирский филиал Башкирского государственного университета

Кафедра химии и методики обучении химии

 

 

                                      Реферат  на тему:

«Радиоактивность, виды, опасность для живых систем»

 

 

Выполнила: студентка 42 группы

факультета биологии и химии Зарипова Л.А.

Проверил: к.х.н, доцент Лыгин С.А.

 

 

 

Бирск – 2014

Содержание

Введение…………………………………………………………………………...3

Глава I. Что такое «радиация» и «радиоактивность»…………………………...5

    1. Виды радиоактивности……………………………………………...6
    2. Источники радиоактивного излучения…………………………….9

Глава II. Атомные электростанции……………………………………………..11

2.1. Чернобыльская АЭС……………………………………...………….11

2.2. Японская АЭС «Фукусима - 1»……………………………………..12

2.3. Нововоронежская АЭС………………………………………………13

Глава III. Опасность радиоактивного излучения……………………………...14

3.1. Влияние радиации на  человеческий организм……………………..15

Заключение……………………………………………………………………….19

Литература……………………………………………………………………….2

 

 

 

 

 

 

 

 

 

 

 

ВВЕДЕНИЕ

С давних времен человек совершенствовал себя. Постоянная нехватка энергии заставляла человека искать и находить новые источники, внедрять их не заботясь о будущем. Таких примеров множество: паровой двигатель побудил человека к созданию огромных фабрик, что за собой повлекло мгновенное ухудшение экологи в городах. Другим примером служит создание каскадов гидроэлектростанций, затопивших огромные территории и изменившие до неузнаваемости экосистемы отдельных районов. В порыве за открытиями в конце XIX в. было открыто явление радиоактивности. Именно это достижение поставило существование всей планеты под угрозу. За 100 с лишним лет человек наделал столько глупостей, сколько не делал за все свое существование. Давно уже прошла Холодная война, мы уже пережили Чернобыль и многие засекреченные аварии на полигонах, однако проблема радиационной угрозы никуда не ушла и по сей день служит главной угрозой биосфере.

Радиация играет огромную роль в развитии цивилизации на данном историческом этапе. Благодаря явлению радиоактивности был совершен существенный прорыв в области медицины и в различных отраслях промышленности, включая энергетику. Но одновременно с этим стали всё отчётливее проявляться негативные стороны свойств радиоактивных элементов: выяснилось, что воздействие радиационного излучения на организм может иметь трагические последствия. Подобный факт не мог пройти мимо внимания общественности. И чем больше становилось известно о действии радиации на человеческий организм и окружающую среду, тем противоречивее становились мнения о том, насколько большую роль должна играть радиация в различных сферах человеческой деятельности.

Проблема радиационного загрязнения стала одной из наиболее актуальных после аварии на ЧАЭС и, тем более, после аварии в Японии на АЭС «Фукусима - I».  Радиоактивность следует рассматривать как неотъемлемую часть нашей жизни, но без знания закономерностей процессов, связанных с радиационным излучением, невозможно реально оценить ситуацию.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава I. ЧТО ТАКОЕ «РАДИАЦИЯ» И «РАДИОАКТИВНОСТЬ»

1 марта 1896 года французский  физик А. Беккерель обнаружил  по почернению фотопластинки  испускание солью урана невидимых  лучей сильной проникающей способности. Вскоре он выяснил, что свойством  лучеиспускания обладает сам уран. А в 1898 году французские ученые М. Склодовская – Кюри и П. Кюри выделили из уранового минерала два новых вещества, радиоактивных в гораздо более сильной степени, чем уран. Так были открыты два неизвестных на то время радиоактивных элемента – полоний и радий и открыто явление радиоактивности.

Радиоактивность (от радий и лат. activus — действенный) — спонтанное превращение неустойчивых изотопов одного химического элемента в изотопы другого элемента, сопровождающееся излучением элементарных частиц или альфа-частиц. Понятие «Радиоактивность» иногда распространяют и на превращения элементарных частиц (нейтронов, мезонов) [1].

Радиоактивность, наблюдающуюся у существующих в природных условиях изотопов, называют природной (естественной) радиоактивностью, а радиоактивность изотопов, полученных искусственным путём, посредством различных ядерных реакций,— искусственной радиоактивностью. Между природной и искусственной радиоактивностью принципиальной разницы не существует, т. к. свойства изотопа не зависят от способа его образования, и радиоактивный изотоп, полученный искусственным путём, ничем не отличается от такого же самого природного изотопа.

Радиация - потоки частиц и квантов электромагнитного излучения, прохождение которых через вещество приводит к ионизации и возбуждению его атомов или молекул. Это электроны, позитроны, протоны, нейтроны и другие элементарные частицы, а также атомные ядра и электромагнитное излучение гамма-, рентгеновского и оптического диапазонов. В случае нейтральных частиц (g-кванты, нейтроны) ионизацию осуществляют вторичные заряженные частицы, образующиеся при взаимодействии нейтральных частиц с веществом (электроны и позитроны — в случае g-квантов, протоны или ядра отдачи — в случае нейтронов)

1.1. ВИДЫ РАДИОАКТИВНОСТИ

Различают два вида радиоактивности: естественная и искусственная.

Естественная радиоактивность существует миллиарды лет, она наблюдается у неустойчивых изотопов, которые существуют в природе. Ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Любой человек слегка радиоактивен: в тканях человеческого тела одним из главных источников природной радиации являются калий-40 и рубидий-87. Учтем, что современный человек до 80% времени проводит в помещениях - дома или на работе, где и получает основную дозу радиации: хотя здания защищают от излучений извне, в стройматериалах из которых они построены, содержится природная радиоактивность. Существенный вклад в облучение человека вносит радон и продукты его распада. Основным источником этого радиоактивного инертного газа является земная кора. Проникая через трещины и щели в фундаменте, полу и стенах, радон задерживается в помещениях. Другой источник радона в помещении - это сами строительные материалы (бетон, кирпич и т.д.), содержащие естественные радионуклиды, которые являются источником радона. Радон может поступать в дома также с водой (особенно если она подается из артезианских скважин), при сжигании природного газа и т.д. Радон в 7,5 раз тяжелее воздуха. Как следствие, концентрация радона в верхних этажах многоэтажных домов обычно ниже, чем на первом этаже. Основную часть дозы облучения от радона человек получает, находясь в закрытом, непроветриваемом помещении; регулярное проветривание может снизить концентрацию радона в несколько раз. При длительном поступлении радона и его продуктов в организм человека многократно возрастает риск возникновения рака легких [2].

Искусственная радиоактивность возникает вследствие человеческой деятельности. Она наблюдается у изотопов, полученных искусственно при ядерных реакциях. Осознанная хозяйственная деятельность, в процессе которой происходит перераспределение и концентрирование естественных радионуклидов, приводит к заметным изменениям естественного радиационного фона. Сюда относится добыча и сжигание каменного угля, нефти, газа, других горючих ископаемых, использование фосфатных удобрений, добыча и переработка руд. Такой вид транспорта, как гражданская авиация, подвергает своих пассажиров повышенному воздействию космического излучения. И, конечно, свой вклад дают испытания ядерного оружия, предприятия атомной энергетики и промышленности. Безусловно, возможно и случайное (неконтролируемое) распространение радиоактивных источников: аварии, потери, хищения, распыление и т.п. Такие ситуации, к счастью, очень редки. На Земле существуют населенные области с повышенным радиационным фоном. Это, например, высокогорные города Богота, Лхаса, Кито, где уровень космического излучения примерно в 5 раз выше, чем на уровне моря. Это также песчаные зоны с большой концентрацией минералов, содержащих фосфаты с примесью урана и тория - в Индии (штат Керала) и Бразилии (штат Эспириту-Санту). Хотя в некоторых из этих районов мощность поглощенной дозы в 1000 раз превышает среднюю по поверхности Земли, обследование населения не выявило сдвигов в структуре заболеваемости и смертности. Кроме того, даже для конкретной местности не существует "нормального фона" как постоянной характеристики, его нельзя получить как результат небольшого числа измерений. В любом месте, даже для неосвоенных территорий, где "не ступала нога человека", радиационный фон изменяется от точки к точке, а также в каждой конкретной точке со временем. Эти колебания фона могут быть весьма значительными. В обжитых местах дополнительно накладываются факторы деятельности предприятий, работы транспорта и т.д. Например, на аэродромах, благодаря высококачественному бетонному покрытию с гранитным щебнем, фон, как правило, выше, чем на прилегающей местности. Опасность не следует преувеличивать. Измерения радиационного фона в городе Москве позволяют указать типичные значение фона на улице (открытой местности) - 8 - 12 мкР/час, в помещении - 15 - 20 мкР/час. В отношении радиоактивности существует очень много норм - нормируется буквально все. Во всех случаях проводится различие между населением и персоналом, т.е. лицами, чья работа связана с радиоактивностью (работники АЭС, ядерной промышленности и т.п.). Вне своего производства персонал относится к населению. Для персонала и производственных помещений устанавливаются свои нормы, опираясь на Федеральный Закон "О радиационной безопасности населения" № 3-ФЗ от 05.12.96 и "Нормы радиационной безопасности (НРБ-99). Гигиенические нормативы СП 2.6.1.758-99". Основная задача радиационного контроля (измерений радиации или радиоактивности) состоит в определении соответствия радиационных параметров исследуемого объекта (мощность дозы в помещении, содержание радионуклидов в строительных материалах и т.д.) установленным нормам

Различают несколько видов радиоактивного излучения. Альфа-излучение - представляет собой поток тяжелых частиц, состоящих из нейтронов и протонов, не способно проникнуть даже сквозь лист бумаги и человеческую кожу. Становится опасным, только при попадании внутрь организма с вдыхаемым воздухом, пищей, через рану. Бета-излучение представляет собой поток отрицательно заряженных частиц, способных проникать сквозь кожу на глубину 1-2 см. Гамма-излучение - имеет самую высокую проникающую способность. Такой вид излучения может задержать толстая свинцовая или бетонная плита.  
Опасность радиации состоит в ее ионизирующем излучении, которое взаимодействует с атомами и молекулами. Это излучение разрывает химические связи молекул, составляющих живые организмы, и вызывая биологически важные изменения.

1.2. ИСТОЧНИКИ РАДИОАКТИВНОГО ИЗЛУЧЕНИЯ

Источники радиоактивного излучения весьма разнообразны, но их можно объединить в две большие группы: естественные и искусственные (созданные человеком). Причем основная доля облучения (более 75% годовой эффективной эквивалентной дозы) приходится на естественный фон.

Естественные радионуклиды делятся на четыре группы: долгоживущие (уран-238, уран-235, торий-232); короткоживущие (радий, радон); долгоживущие одиночные, не образующие семейств (калий-40); радионуклиды, возникающие в результате взаимодействия космических частиц с атомными ядрами вещества Земли (углерод-14).

Среди естественных радионуклидов наибольший вклад (более 50%) в суммарную дозу облучения несет радон и его дочерние продукты распада (в т.ч. радий). Опасность радона заключается в его широком распространении, высокой проникающей способности и миграционной подвижности (активности), распаде с образованием радия и других высокоактивных радионуклидов [3].

Искусственные источники радиационного облучения существенно отличаются от естественных не только происхождением. Во-первых, сильно различаются индивидуальные дозы, полученные разными людьми от искусственных радионуклидов. Во-вторых, разнообразие их намного больше, чем естественных. Наконец, загрязнение от искусственных источников радиационного излучения (кроме радиоактивных осадков в результате ядерных взрывов) легче контролировать, чем природно обусловленное загрязнение.

Основной вклад в загрязнение от искусственных источников вносят различные медицинские процедуры и методы лечения, связанные с применением радиоактивности. Основной прибор, без которого не может обойтись ни одна крупная клиника - рентгеновский аппарат, но существует множество других методов диагностики и лечения, связанных с использованием радиоизотопов. В принципе облучение в медицине не столь опасно, если им не злоупотреблять.

Следующий источник облучения, созданный руками человека - радиоактивные осадки, выпавшие в результате испытания ядерного оружия в атмосфере. Радиоактивные осадки содержат большое количество различных радионуклидов, но из них наибольшую роль играют цирконий-95, цезий-137, стронций-90 и углерод-14. И, несмотря на то, что основная часть взрывов была произведена еще в 1950-60е годы, их последствия мы испытываем на себе и сейчас.

Один из наиболее обсуждаемых сегодня источников радиационного излучения является атомная энергетика.

Строительные материалы отличаются повышенной радиоактивностью. Среди таких материалов - некоторые разновидности гранитов, пемзы и бетона, при производстве которого использовались глинозем, фосфогипс и кальциево-силикатный шлак.  Также радиоактивными являются светящиеся стрелки часов, вещества для отбеливания зубов.

 

Глава II. АТОМНЫЕ ЭЛЕКТРОСТАНЦИИ

Атомная электростанция (АЭС) — ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используются ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками [4].

2.1. ЧЕРНОБЫЛЬСКАЯ АЭС

Чернобыльская атомная электростанция им. В.И. Ленина стала всемирно известной после аварии в 1986 году.

Строительство ЧАЭС началось в 1970 году. А в 1977 году уже был запущен в действие 1-ый энергоблок. Всего было запущено в действие 4 энергоблока.

На этой электростанции было зафиксировано несколько аварий, но катастрофической оказалась авария 26 апреля 1986 года, когда был разрушен 4-ый энергоблок. Разрушение носило взрывной характер, реактор был полностью разрушен, и в окружающую среду было выброшено большое количество радиоактивных веществ. Облако, образовавшееся от горящего реактора, разнесло различные радиоактивные материалы, и прежде всего радионуклиды йода и цезия, по большей части территории Европы. Наибольшие выпадения отмечались на значительных территориях в Советском Союзе, расположенных вблизи реактора и относящихся теперь к территориям Беларусии, Российской Федерации и Украины.

Велики были последствия этой аварии. От сильного облучения гибли работники станции, были многомиллиардные финансовые потери, на территории более 30-ти км. от АЭС нельзя было жить, уничтожены сотни мелких населенных пунктов, из сельскохозяйственного оборота было выведено около 5 млн. га. земель.

Когда последствия трагедии оценили со всей серьезностью, над 4-м реактором при помощи дистанционного монтажа стали возводить «саркофаг» (т.н.  объект «Укрытие»), который должен был ближайшие 20 лет защищать мир от вредных воздействий радиации, излучаемой остатками вредного производства. Гарантированный срок истек. Для перевода «Укрытия» в экологически безопасный объект был спроектирован новый «саркофаг» («Укрытие-2») в форме арки. Он будет построен вблизи четвертого энергоблока, а потом надвинут на него. Срок эксплуатации нового саркофага должен составить 100 лет.

Информация о работе Радиоактивность, виды, опасность для живых систем