Получение хромо калиевых квасцов

Автор работы: Пользователь скрыл имя, 27 Ноября 2015 в 20:30, курсовая работа

Описание работы

Квасцы — двойные соли, кристаллогидраты сульфатов трёх- и одновалентных металлов общей формулы M+2SO4•M3+2(SO4)3•24H2O (часто записывается как M+M3+(SO4)2•12H2O), где M+ — один из щелочных металлов (литий, натрий, калий, рубидий или цезий), а M3+ — один из трехвалентных металлов (обычно алюминий, хром или железо(III))

Содержание работы

Введение…………………………………………………………………...3
1. Теоретическая часть…………………………………………………….4
1.1 Хром……………………………………………………………………..4
1.1.1 История и происхождение названия……………………………….4
1.1.2 Нахождение в природе……………………………………………….4
1.1.3 Получение…………………………………………………………….5
1.1.4 Физические свойства………………………………………………...6
1.1.5 Химические свойства……………………………………………….8
1.1.6 Соединения …………………………………………………………9
1.1.7 Применение …………………………………………………………11
1.2 Калий…………………………………………………………………16
1.2.1 История и происхождение названия ………………………………16
1.2.2 Нахождение в природе …………………………………………..16
1.2.3 Получение…………………………………………………………18
1.2.4 Физические свойства …………………………………………….18
1.2.5 Химические свойства………………………………………………19
1.2.6 Соединения………………………………………………………...21
1.2.7 Применение ………………………………………………………22
2. Практическая часть ………………………………………………….23
2.1 Методика выполнения синтеза …………………………………….23
2.2 Расчет термодинамической возможности реакции………………24
2.3 Расчет практического выхода вещества ………………………….24
Заключение ……………………………………………………………25
Список использованных источников…………………………………26

Файлы: 1 файл

Неорганический синтез.docx

— 1.40 Мб (Скачать файл)

Содержание

Введение…………………………………………………………………...3                                                                                                        

1. Теоретическая часть…………………………………………………….4                                                                           

1.1 Хром……………………………………………………………………..4                                                                                                       

1.1.1 История и происхождение названия……………………………….4                                                 

1.1.2 Нахождение в природе……………………………………………….4                                                                        

1.1.3 Получение…………………………………………………………….5                                                                                       

1.1.4 Физические свойства………………………………………………...6                                                                           

1.1.5 Химические свойства……………………………………………….8                                                                       

1.1.6 Соединения …………………………………………………………9                                                                                       

1.1.7 Применение …………………………………………………………11                                                                                     

1.2 Калий…………………………………………………………………16                                                                                                    

1.2.1 История и происхождение  названия ………………………………16                                            

1.2.2 Нахождение в природе …………………………………………..16                                                                  

1.2.3 Получение…………………………………………………………18                                                                                         

1.2.4 Физические свойства  …………………………………………….18                                                                    

1.2.5 Химические свойства………………………………………………19                                                                     

1.2.6 Соединения………………………………………………………...21                                                                                       

1.2.7 Применение  ………………………………………………………22                                                                                     

2. Практическая часть ………………………………………………….23                                                                           

2.1 Методика выполнения  синтеза …………………………………….23                                                         

2.2 Расчет термодинамической  возможности реакции………………24                           

2.3 Расчет практического выхода вещества ………………………….24                                          

Заключение  ……………………………………………………………25                                                                                              

Список использованных источников…………………………………26                                                      

 

 

 

 

 

 

Введение

 

Квасцы — двойные соли, кристаллогидраты сульфатов трёх- и одновалентных металлов общей формулы M+2SO4•M3+2(SO4)3•24H2O (часто записывается как M+M3+(SO4)2•12H2O), где M+ — один из щелочных металлов (литий, натрий, калий, рубидий или цезий), а M3+ — один из трехвалентных металлов (обычно алюминий, хром или железо(III)). Ион аммония (NH4+) может также выступать в роли M+. Раньше этот термин относился только к алюмокалиевым квасцам. Их получали из природных минералов, из которых наиболее пригодным для этого был алунит. Природный алунит обычно находили в виде бесцветных кристаллов, которые римляне называли словом alumen . От этого слова произошло и современное название элемента алюминия. Полученные из алунита квасцы имели сладковато-кислый вяжущий вкус, откуда идёт их название в славянских языках; например, кислота по-польски – kwas; отсюда и русское слово «закваска» - вещество, вызывающее кислое брожение. Квасцы могут быть получены смешением горячих эквимолярных водных растворов сульфатов соответствующих металлов, при охлаждении таких растворов из них кристаллизуются квасцы. Известно несколько десятков различных квасцов. Способность к образованию квасцов, их устойчивость возрастают по мере увеличения радиуса М+ и уменьшения радиуса М3+ (при сходной внешней электронной оболочке). При этом более сильное влияние на свойства квасцов оказывает природа М+. У квасцов, содержащих один и тот же катион М3+ , в ряду Na, К, NH4, Rb, Cs растворимость в воде падает, а температура плавления и их термическая устойчивость увеличиваются. Квасцы легко выделяются из водных растворов в виде больших октаэдрических кристаллов с кубической решеткой. Известны три структурные разновидности квасцов - отличающиеся друг от друга ориентацией тетраэдров SO4 по отношению к М+ и некоторыми другими признаками. Эти различия обусловлены размером однозарядного катиона.

  1. Теоретическая часть

 

    1. Хром

 

      1. История и происхождение названия

 

В 1766 году в окрестностях Екатеринбурга был обнаружен минерал, который получил название «сибирский красный свинец», PbCrO4. Современное название — крокоит. В 1797 французский химик Л. Н. Воклен выделил из него новый тугоплавкий металл(скорее всего Воклен получил карбид хрома).

Название элемент получил от греч. χρῶμα — цвет, краска — из-за разнообразия окраски своих соединений.

 

      1. Нахождение в природе

 

Хром встречается в виде соединений в различных минералах. Наиболее распространен минерал хромит, или хромистый железнякFeCr204, богатые месторождения которого имеются на Урале и в Казахстане. Массовая доля хрома в земной коре составляет 0,03%. Хром обнаружен на Солнце, звездах и в метеоритах.

Еще в 1766 году петербургский профессор химии И. Г. Леман описал новый минерал, найденный на Урале на Березовском руднике, в 15 километрах от Екатеринбурга (ныне Свердловск). Обрабатывая камень соляной кислотой, Леман получил изумрудно-зеленый раствор, а в образовавшемся белом осадке обнаружил свинец. Спустя несколько лет, в 1770 году, Березовские рудники описал академик П. С. Паллас. «Березовские копи, — писал он, — состоят из четырех рудников, которые разрабатываются с 1752 года. В них наряду с золотом добываются серебро и свинцовые руды, а также находят замечательный красный свинцовый минерал, который не был обнаружен больше ни в одном другом руднике России. Эта свинцовая руда бывает разного цвета (иногда похожего на цвет киновари), тяжелая и полупрозрачная... Иногда маленькие неправильные пирамидки этого минерала бывают вкраплены в кварц подобно маленьким рубинам. При размельчении в порошок она дает красивую желтую краску.

В 1936 году в Казахстане, в районе Актюбинска, были найдены огромные залежи хромита — основного промышленного сырья для производства феррохрома. В годы войны на базе этого месторождения был построен Актюбинский ферросплавный завод, который впоследствии стал крупнейшим предприятием по выпуску феррохрома и хрома всех марок.

Богат хромистой рудой и Урал. Здесь расположено большое число месторождений этого металла: Сарановское, Верблюжьегорское, Алапаевское, Монетная дача, Халиловское и др. По разведанным запасам хромистых руд Россия занимает ведущее место в мире.

Руды хрома имеются в Турции, Индии, Новой Каледонии, на Кубе, в Греции, Югославии, некоторых странах Африки. В то же время такие промышленные страны, как Англия, Франция, ФРГ, Италия, Швеция, Норвегия, совершенно лишены хромового сырья, а США и Канада располагают лишь очень бедными рудами, практически не пригодными для производства феррохрома. Всего же на долю хрома приходится 0,02% земной коры.

 

      1. Получение

 

Хром встречается в природе в основном в виде хромистого железняка Fe(CrO2)2 (хромит железа). Из него получают феррохром восстановлением в электропечах коксом (углеродом):

FeO · Cr2O3 + 4C → Fe + 2Cr + 4CO↑

Феррохром применяют для производства легированных сталей.

Чтобы получить чистый хром, реакцию ведут следующим образом:

1) сплавляют хромит железа  с карбонатом натрия (кальцинированная  сода) на воздухе:

4Fe(CrO2)2 + 8Na2CO3 + 7O2 → 8Na2CrO4 + 2Fe2O3 + 8CO2↑

2) растворяют хромат натрия  и отделяют его от оксида  железа;

3) переводят хромат в  дихромат, подкисляя раствор и  выкристаллизовывая дихромат;

4) получают чистый оксид  хрома восстановлением дихромата  углём:

Na2Cr2O7 + 2C → Cr2O3 + Na2CO3 + CO↑

5) с помощью алюминотермии получают металлический хром:

Cr2O3+ 2Al → Al2O3 + 2Cr + 130 ккал

6) с помощью электролиза получают электролитический хром из раствора хромового ангидрида в воде, содержащего добавку серной кислоты. При этом на катодах совершаются в основном 3 процесса:

  • восстановление шестивалентного хрома до трехвалентного с переходом его в раствор;
  • разряд ионов водорода с выделением газообразного водорода;
  • разряд ионов, содержащих шестивалентный хром, с осаждением металлического хрома;

Cr2O72− + 14Н+ + 12е− = 2Cr + 7H2O

 

      1. Физические свойства.

 

Хром — серовато-белый блестящий металл по внешнему виду похож на сталь. Из металлов он самый твердый, его плотность 7,19 г/см3, т. пл. 1855 °С. Природный хром состоит из смеси пяти изотопов с массовыми числами 50, 52, 53, 54 и 56. Радиоактивные изотопы получены искусственно.

Хром обладает всеми характерными свойствами металлов — хорошо проводит тепло, почти не оказывает сопротивления электрическому току, имеет присущий большинству металлов блеск. Любопытна одна особенность хрома: при температуре около 37°С он ведет себя явно «вызывающе» — многие его физические свойства резко, скачкообразно меняются. В этой температурной точке внутреннее трение хрома достигает максимума, а модуль упругости падает до минимальных значений. Так же внезапно изменяются электропроводность, коэффициент линейного расширения, термоэлектродвижущая сила. Пока ученые не могут объяснить эту аномалию.

Даже незначительные примеси делают хром очень хрупким, поэтому в качестве конструкционного материала его практически не применяют, зато как легирующий элемент он издавна пользуется у металлургов почетом. Небольшие добавки его придают стали твердость и износостойкость. Такие свойства присущи шарикоподшипниковой стали, в состав которой, наряду с хромом (до 1,5%), входит углерод (около 1%). Образующиеся в ней карбиды хрома отличаются исключительной твердостью — они-то и позволяют металлу уверенно сопротивляться одному из опаснейших врагов — износу.

В качестве представителя металлов, относящихся к побочным подгруппам периодической системы, рассмотрим хром: он возглавляет побочную подгруппу VI группы. Хром — металл, по внешнему виду похожий на сталь. От ранее рассмотренных металлов он, как и все металлы с достраивающимся предпоследним электронным слоем атома, отличается тугоплавкостью и твердостью. По твердости хром превосходит все металлы, он царапает стекло.

 

 

      1. Химические свойства

 

При небольших температурах хром химически мало активен (взаимодействует только с фтором). Выше 6000C взаимодействует с галогенами, серой, азотом, кремнием, бором, углеродом, кислородом. Взаимодействие с кислородом протекает сначала довольно активно, затем, однако, резко замедляется, так как поверхность покрывается тонкой чрезвычайно устойчивой пленкой, препятствующему дальнейшему окислению. Это явление называется пассивированием. При 12000C пленка начинает разрушаться, окисление снова идет быстро. При 20000C хром воспламеняется в кислороде с образованием темно-зеленого оксида Cr2O3.

Хром пассивируется холодными концентрированными H2SO4 и HNO3, однако при сильном нагревании он растворяется в этих кислотах:

2Cr + 6H2SO4(конц.) = Cr2(SO4)3 + 3SO2 + 6H2O

Cr + 6HNO3(конц.) = Cr(NO3)3 + 3NO2 + 3H2O

Хром растворяется в разбавленных сильных кислотах (HCl и H2SO4). В этих случаях в отсутствии воздуха образуются соли Cr2+, а на воздухе - соли Cr3+:

Cr + 2HCl = CrCl2+ H2

4Cr + 12HCl +3O2 = 4CrCl3 + 6H2O

Нерастворим в H3PO4, HClO4 благодаря образованию защитной пленки.

 

 

 

 

      1. Соединения хрома

 

Оксиды

Оксид хрома (II) CrO (основной) - сильный восстановитель, чрезвычайно неустойчив в присутствии влаги и кислорода. Практического значения не имеет.

Оксид хрома (III) Cr2O3 (амфотерный) устойчив на воздухе и в растворах.

Cr2O3 + H2SO4 = Cr2(SO4)3 + H2O

Cr2O3 + 2NaOH = Na2CrO4 + H2O

Образуется при нагревании некоторых соединений хрома (VI), например:

4CrO3 = 2Cr2O3 + 3О2

(NH4)2Cr2O7 = Cr2O3 + N2 + 4H2O

4Cr + 3O2  = 2Cr2O3

Оксид хрома (III) используется для восстановления металлического хрома невысокой чистоты с помощью алюминия (алюминотермия) или кремния (силикотермия):

Cr2O3 +2Al = Al2O3 +2Cr

2Cr2O3 + 3Si = 3SiO3 + 4Cr

Оксид хрома (VI) CrO3 (кислотный) - темно малиновые игольчатые кристаллы. Получают действием избытка концентрированной H2SO4 на насыщенный водный раствор бихромата калия:

K2Cr2O7 + 2H2SO4 = 2CrO3 + 2KHSO4 + H2O

Информация о работе Получение хромо калиевых квасцов